
INFORMATION DRIVEN, ADAPTIVE DISTRIBUTED PLANNING

THE UNIVERSITY OF TULSA

JUNE 2019

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2019-126

 UNITED STATES AIR FORCE ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose other
than Government procurement does not in any way obligate the U.S. Government. The fact that the
Government formulated or supplied the drawings, specifications, or other data does not license the holder
or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any
patented invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB Public Affairs Office and is
available to the general public, including foreign nationals. Copies may be obtained from the Defense Technical
Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2019-126 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE CHIEF ENGINEER:

/ S /
WILLIAM DAVID LEWIS
Work Unit Manager

JULIE BRICHACEK
Chief, Information Systems Division
Information Directorate

This report is published in the interest of scientific and technical information exchange, and its publication
does not constitute the Government’s approval or disapproval of its ideas or findings.

/ S /

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information
if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

JUNE 2019
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

SEP 2016 – DEC 2018
4. TITLE AND SUBTITLE

INFORMATION DRIVEN, ADAPTIVE DISTRIBUTED PLANNING

5a. CONTRACT NUMBER
N/A

5b. GRANT NUMBER
FA8750-16-1-0253

5c. PROGRAM ELEMENT NUMBER
62788F

6. AUTHOR(S)

Roger Mailler and Rose Gamble

5d. PROJECT NUMBER
S2MY

5e. TASK NUMBER
RA

5f. WORK UNIT NUMBER
ST

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
The University of Tulsa
800 South Tucker Drive
Tulsa, OK 74104

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RISC
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2019-126
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research
deemed exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec
08 and AFRL/CA policy clarification memorandum dated 16 Jan 09.
13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report details our approach to combining dynamic, distributed constraint reasoning with machine learning
techniques and adaptive response strategies. By combining these technologies, we built a system that can 1) develop
robust, adaptable mission plans 2) exploit knowledge learned through prior interactions with our adversary, and 3)
autonomously and dynamically alter its behavior during mission execution to improve the likelihood of a successful
outcome. This system has been thoroughly tested in the ATE2 and ATE3 simulators that were provided by AFRL/RI
against four increasingly difficult milestones.

15. SUBJECT TERMS

Task allocation, intelligent path planning, ISR management

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON

WILLIAM DAVID LEWIS
a. REPORT

U
b. ABSTRACT

U
c. THIS PAGE

U
19b. TELEPHONE NUMBER (Include area code)

(315) 330-7707
Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39.18

56

i

Table of Contents

Summary .. 1

Introduction ... 2

Methods, Assumptions, and Procedures ... 3

3.1 Characterizing an environment ... 3

3.2 General Approach: Information Driven, Adaptive Distributed Planning ... 4

3.2.1 Mission Planning Module: MTL Robustness for Path Planning with A* 5

3.2.1.1 RA* Algorithm... 10

3.2.1.2 RHS .. 13

3.2.1.3 Evaluation .. 16

3.2.2 Pattern Learning Module .. 19

3.2.2.1 Markov Decision Process (MDP) .. 20

3.2.2.2 Inverse Reinforcement Learning (IRL) .. 20

3.2.2.3 Kalman Filter (KF) ... 21

3.2.2.5 Evaluation .. 33

3.2.3 Coordination Module .. 34

Results and Discussion ... 46

4.1 A2AD Event List .. 46

4.2 Objective Function ... 46

4.3 Scenarios .. 47

4.3.1 Scenario 1 .. 47

4.3.2 Scenario 2 .. 47

4.3.3 Scenario 3 .. 48

Conclusion .. 49

Future Work ... 49

References .. 50

List of Acronyms .. 51

6.0

5.0

4.0

3.0

2.0

1.0

ii

List of Figures
Figure 1: The developed framework ... 5
Figure 2: The system model for MPM and MEM .. 6
Figure 3: The structure of the problem domain .. 9
Figure 4: An example of RA* utilizes the robust neighborhood .. 15
Figure 5: RA* path planning with limited resources .. 16
Figure 6: A*path planning in presence of mobile enemies ... 18
Figure 7: RA* plans with unlimited resources ... 18
Figure 8: Pattern Learning Framework (PLF) .. 20
Figure 9: State space and feature space .. 25
Figure 10: Behavior classification process ... 27
Figure 11: Prediction process for enemy behavior ... 29
Figure 12: The distance between the predicted location of the enemy and its actual location 34
Figure 13: The percentage of correctly classified enemies ... 34
Figure 14: The class hierarchy for task coordination .. 36
Figure 15: Finite-state machine for states of TUAgent .. 39

List of Tables
Table 1: Comparison between A* and RA* in seconds ... 17
Table 2: The performance metrics .. 47
Table 3: Performance metrics for Scenario 1 ... 47
Table 4: Performance metrics for Scenario 2 ... 48
Table 5: Performance metrics for Scenario 3 ... 48

1

1.0 Summary
Robert Burns once wrote: “The best-laid plans of mice and men oft go astray.” Nowhere is this

statement truer than when planning missions in an uncertain, adversarial environment. Despite
our best efforts and hundreds of years of experience, planning is still an arduous task whose results
often dictate the outcome before the first action is ever taken. However, as Burns points out, even
the best laid plans must be able to adapt to unforeseen circumstances to ensure that they succeed.

The overall goal of this project was to develop new technologies to dynamically control and
coordinate multiple Unmanned Aerial Vehicles (UAVs) so they can accomplish their missions
while the enemy is attempting to deny them access and prevent them from communicating. This
report details our approach to addressing this complex problem by augmenting dynamic, distributed
constraint reasoning with machine learning techniques and adaptive response strategies. By
combining these technologies, we built a system that can 1) develop robust, adaptable mission
plans, 2) exploit knowledge learned through prior interactions with an adversary, and 3)
autonomously and dynamically alter its behavior during mission execution to improve the
likelihood of a successful outcome. This system has been thoroughly tested in the ATE2 and ATE3

simulators that were provided by AFRL/RI against four increasingly difficult milestones.
Clearly, there were several key challenges that needed to be addressed in order to build this

system. First, although we have already developed a system that uses constraint reasoning to solve
ISR allocation problems and can leverage that experience, allocating an asset is very different from
developing a specific plan. To rectify this distinction, we developed a mission planner that
represents threats and goals as dynamic, geo-temporal constraints. We designed the mission
planner using MTL robustness and A* to create robust plans that allow flexibility in the
autonomous decision making of the agent. This flexibility is a particularly important feature
because the UAVs cannot always predict the enemy’s actions and may not be able to communicate
when it needs to alter its mission. Second, nearly all distributed protocols assume that
communications are perfect. Our system explicitly reasons about communications, determines if
it is necessary to communicate, and potentially adapts the mission in response. We developed a
simple, self-adaptive technique with multiple layers as a basis for our coordination process.
Finally, we developed learning techniques that are able to dynamically generate and update the
geo-temporal constraints. We utilized a layer-learning approach that is formed using Kalman
filters, Markov Decision Processes (MDPs), and Inverse Reinforcement Learning (IRL). In
contrast to traditional reinforcement learning, our approach learns the enemy’s policies and
optimizes our actions using distributed constraint optimization methods. Thus, the system is not
reacting to the enemy, but rather taking actions that exploit weaknesses in their reactions. By
combining these learning methods, the resulting system is capable of online adaptation as well as
offline learning.

The result of this effort includes more than just a potential solution to a single problem. The
techniques and protocols developed during this project enable smooth system planning and
adaptation, increase the mission robustness of the autonomous vehicles in adversarial
environments, and minimize vehicle loss during mission execution by learning the enemy’s
behavior. This project provides a deeper understanding of how to integrate multiple AI
technologies into a resilient system that acts autonomously in a real-world setting.

Approved for Public Release; Distribution Unlimited.

2

 2.0 Introduction
Performing Intelligence, Surveillance, and Reconnaissance (ISR) in uncertain, adversarial

environments is a complex task that involves sophisticated pre-planning combined with dynamic
adaption during mission execution. This is particularly true when mission success is dependent
upon coordinating multiple, heterogeneous autonomous assets against an enemy that is intelligent,
capable, and highly mobile. Succeeding in these environments does not necessarily require
technological or numeric superiority if strategic and/or tactical patterns can be identified and
exploited. Therefore, it is imperative that systems of the future be designed to recognize and adapt
to these patterns to increase their resiliency and maximize the probability of a successful outcome.

The ISR mission planning domain has several key features that must be taken into consideration.
First, assets must be able to act intelligently and autonomously to minimize the need for human
action. Second, communication is limited to prevent detection and hostile electronics warfare.
Third, the system must be able to handle 100s of assets doing 1000s of missions. Fourth, the
enemy is acting intelligently to prevent missions from completing causing the environment to
constantly change.

This project combines dynamic, constraint-based coordination with learning technology and
adaptation strategies to achieve the overall objective of ISR missions in adversarial environments.
The goals of this fusion were to (1) develop distributed technologies that can identify patterns in
behavior (learn) and (2) exploit these patterns to devise coordinated strategies to maximize goal
completion with minimal cost (adapt). These goals naturally led to several important research
questions that we addressed in this project:

1. How do we design a system that intelligently acquires and delivers relevant
information to the right asset to support the learning and coordination tasks in a
dynamic, communications degraded environment? Allocating multiple UAVs to
perform sub-tasks cooperatively toward achieving a global mission objective is a challenge
covered under different research areas. The problem becomes harder when the knowledge
about the tasks and the risk distribution is imperfect with communication impairments. In
addition to that, the capability of each UAV is restricted according to its sensor type, fuel
capacity, mission deadline, and weapon ammunition. The goal is to design a coordination
strategy allowing the UAVs to reason about each other and make decisions when the
communication is degraded.

2. What learning technologies provide the most appropriate and efficient strategies
given the bounded rationality of the agents and the changing behavior of the enemy?
To enhance the robustness of the generated plans for our UAVs, we need to identify
patterns in the movement of individual threats and targets as well as learning patterns of
enemy reactions to the actions taken by the friendly forces. Our objective is to identify the
specific technologies that would perform the fastest and have the most accurate responses
given the data. After anticipating the behaviors of our adversaries, the goal becomes about
computing plans that would avoid the anticipated models to increase the safety of UAVs.

3. How can learned knowledge be used to identify opportunities for generating
coordinated UAV activities that accomplish tasks, which would have been impossible

Approved for Public Release; Distribution Unlimited.

3

or prohibitive to accomplish otherwise? Cooperative, distributed planning is a complex
problem where each UAV develops an individual, local plan that is refined while
coordinating with other UAVs to avoid potential conflicts and use cooperative
opportunities for improved completion of mission objectives. The coordination objective
is to maximize the availability, timeliness, and accuracy of information in a rapidly-
changing, uncertain, and possibly hostile environment. To achieve high-level goals, such
as multi-modal data gathering, under these conditions, UAVs must not only be able to
reason introspectively (i.e. what actions and information are needed to achieve the local
plan), but also extrospectively (i.e. what actions and information are needed for others to
achieve their local plans).

3.0 Methods, Assumptions, and Procedures
3.1 Characterizing an environment

Our overall approach is to formulate this problem as a dynamic, distributed constraint
optimization problem (DynDCOP). This formulation is ideal for the ISR mission planning domain
because the assets can act autonomously to adapt their plans, communications can be limited to
only the most important information, 1000s of assets can be simultaneously controlled without a
central point of failure, and it can to adapt to both fast and slow changes in the assets, goals, and
constraints [1].

The distributed constraint satisfaction problem (DCSP) [2] and distributed constraint
optimization problem (DCOP) [3] have been used as common formalisms to describe problems
including distributed resource allocation [4], distributed heuristic search [5], and distributed
interpretation [6]. Formally speaking, a Distributed Constraint Satisfaction/Optimization Problem
(DCSP/DCOP), 𝑷𝑷 = 〈𝑉𝑉,𝐴𝐴,𝐷𝐷,𝑓𝑓〉, consists of the following [2]:

• A set of n variables, 𝑉𝑉 = {𝑥𝑥1, … , 𝑥𝑥𝑛𝑛}.
• A set of g agents, 𝐴𝐴 = �𝑎𝑎1, … ,𝑎𝑎𝑔𝑔�.

• A set of discrete, finite domains for each variable 𝐷𝐷 = {𝐷𝐷1, … ,𝐷𝐷𝑛𝑛}.
• A set of utility functions 𝑓𝑓 = {𝑓𝑓1, … , 𝑓𝑓𝑚𝑚} where each 𝑓𝑓𝑖𝑖�𝑑𝑑𝑖𝑖,1, … ,𝑑𝑑𝑖𝑖,𝑗𝑗� is a function

𝑓𝑓𝑖𝑖:𝐷𝐷𝑖𝑖,1 ×⋯×𝐷𝐷𝑖𝑖,𝑗𝑗 ↦ ℝ∪∞ where the functions take in a subset values of the variables
and return a utility.

The task is to find an assignment 𝑆𝑆∗ = {𝑑𝑑1, … ,𝑑𝑑𝑛𝑛|𝑑𝑑𝑖𝑖 ∈ 𝐷𝐷𝑖𝑖} such that the global utility, called F,
is maximized. The function F can be any associative, commutative, monotonic aggregation
function defined over a totally ordered set of values, with min and max elements. F is often defined
as 𝐹𝐹(𝑆𝑆) = ∑ 𝑓𝑓𝑖𝑖(𝑆𝑆)𝑚𝑚

𝑖𝑖=1 .
Building on our prior work, each goal (surveilling a target) is modeled as a variable and potential

mission assignments (asset/plan combinations) as its domain. We also define a set of unary
constraints that represent the assets’ capabilities and a set of binary constraints that prevent an
asset from being assigned two different missions during the same time.

For dynamic settings, we consider how the problem is changing by introducing a function
∆:𝑃𝑃𝑡𝑡 ↦ 𝑃𝑃𝑡𝑡+1 that maps a problem at time t to a new problem at t+1 [7]. This function creates a

Approved for Public Release; Distribution Unlimited.

4

sequence of problems: 𝑷𝑷 =< 𝑃𝑃0,𝑃𝑃1, … ,𝑃𝑃𝑛𝑛 > where Pi is a static problem that entails a set 𝑆𝑆𝑖𝑖 =
{𝑠𝑠𝑖𝑖1, … , 𝑠𝑠𝑖𝑖𝑚𝑚} of assignments each with its own utility 𝑈𝑈�𝑠𝑠𝑖𝑖𝑘𝑘�. The general form of this function is
𝑃𝑃𝑖𝑖 = 𝑃𝑃𝑖𝑖−1 + 𝑓𝑓𝑖𝑖𝑎𝑎 − 𝑓𝑓𝑖𝑖𝑟𝑟 where 𝑓𝑓𝑖𝑖𝑎𝑎 and 𝑓𝑓𝑖𝑖𝑟𝑟 are the set of added and removed interrelationships [8].
This leads to a characterization of the rate of change of the problem as

𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= lim
∆𝑡𝑡→0

𝑑𝑑𝑡𝑡+∆𝑡𝑡−𝑑𝑑𝑡𝑡
∆𝑡𝑡

= 1
∆𝑡𝑡
∑ (|𝑓𝑓𝑖𝑖𝑎𝑎| + |𝑓𝑓𝑖𝑖𝑟𝑟|)𝑡𝑡+∆𝑡𝑡
𝑖𝑖=𝑡𝑡

For this system to work, it now needs to consider the enemy. This is done by introducing a new
set of dynamic constraints. The new dynamic, geo-temporal constraints (GTCs) represent areas
that must be avoided in order for the mission to succeed. These constraints are dynamic, because
we may not know the locations of all of the enemy assets and the assets change position over time.
Formally, a dynamic GTC is a function 𝑔𝑔𝑡𝑡𝑡𝑡(𝑙𝑙𝑎𝑎𝑡𝑡, 𝑙𝑙𝑙𝑙𝑛𝑛, 𝑡𝑡) → ℝ ∪∞. Here the function takes a
latitude and longitude location at a particular time t and returns a cost associated with being in that
place at that time. We use the set of GTCs to compute the utility of a particular mission by iterating
over the mission plan and computing the cost of the individual GTCs. To precisely and simply
specify our GTC, we use Metric Temporal Logic (MTL), [9] which is typically used in offline
verification and online control of hybrid systems.

To address this problem, we have set some assumptions regarding the environment, targets, and
enemies. The targets have a range called the terminal range. For each problem instance, the goal
is for the UAV (from now on we call it drone) to eventually be located within terminal range of its
assigned target. The environment is non-deterministic, such that the drone has partial information
about enemies prior the mission, including their geometry and capabilities, but the distribution of
enemies is unknown until the drone traverses the world and uses its sensors for detection. The
drone can perceive the environment around it within a circular region centered at the drone location
where the radius of the circle is its vision range. The environment under investigation has three
types of static and mobile enemies with different risk ranges:

1. Radars: able to see and detect the drone within its visual range (VR).
2. Jammers: able to jam the drone’s communications if the drone gets in its jamming range

(JR).
3. Killers: able to shoot missiles when the drone gets inside its weapon range (WR).

3.2 General Approach: Information Driven, Adaptive Distributed Planning
We developed a framework with five major components: Mission Planner Module (MPM),

Mission Execution Module (MEM), Coordination Module (CM), and Pattern Learning Module
(PLM). These modules represent the combination of knowledge representation and planning,
system control, machine learning, and dynamic, distributed constraint reasoning. Figure 1 shows
our framework.

Approved for Public Release; Distribution Unlimited.

5

Figure 1: The developed framework

3.2.1 Mission Planning Module: MTL Robustness for Path Planning with A*

We built our MPM by developing a robustness function using the robustness theory of Metric
Temporal Logic (MTL) [9] to maximize the drone safety while satisfying mission constraints.
MTL robustness can be defined as the upper-bounded perturbation that the drone can tolerate
without changing its Boolean truth value with respect to its mission specification expressed in
MTL [9]. Specifically, if an MTL specification 𝜑𝜑 evaluates to a positive robustness 𝜀𝜀, then the
specification is true, i.e., satisfied and, moreover, the path points can tolerate perturbations up to 𝜀𝜀
and still satisfy the specification. Similarly, if 𝜀𝜀 is negative, then the path point does not satisfy 𝜑𝜑
and all the other points that remain within the open tube of radius |𝜀𝜀| also do not satisfy 𝜑𝜑.

Our approach to address the reach-while-avoid-when-possible problem has two main steps.
First, the mission constraints are simply and concisely expressed using MTL specifications [10].
Secondly, we developed Robust A* (RA*) by extending A* with two modifications: (i) a soft
modification of the objective function to include the MTL robustness function, and (ii) a hard
modification of the algorithm logic to exclude the non-robust positions from the search space. The
robustness function is used to guide the node expansion in RA* and dynamically create a safety
margin around adversarial assets using the drone resources. In addition, RA* creates a robust
neighborhood around the generated path using the robustness degrees of the path points [9, 11].
The robust neighborhood provides a set of valid trajectories that can be robust enough for the drone
to autonomously react to moving enemies or fuel loss without conducting a re-planning process.

Figure 2 displays a closed-loop process that ends when the drone reaches the target. The RA*
generates the robust neighborhood while Robust_Heuristic_Search (RHS) adjusts the path when
new information is detected without the need for re-planning.

Approved for Public Release; Distribution Unlimited.

6

Figure 2: The system model for MPM and MEM

 The RA* algorithm creates a safety margin around the closest enemy to set the minimum
acceptable risk at each path step. The safety margin size is computed using the robustness function
to maximize the satisfaction of the mission constraints along the planned path. RA* keeps track of
a robust neighborhood around the optimal trajectory to reduce re-planning attempts and increase
drone resilience against moving enemies. The robustness measure returns positive values if the
trajectory satisfies the specification and negative values otherwise. Intuitively, the robustness
degree of a feasible path is the largest distance the drone can independently perturb and still
maintain the feasibility of its current path. This defines a neighborhood around the original path
such that any trajectory within this neighborhood is guaranteed to satisfy the specification but with
a lower degree of robustness. When the drone detects a violation of its constraints, the RHS utilizes
the current robust neighborhood to find a valid replaceable trajectory. When the whole
neighborhood becomes invalid, re-planning needs to be executed by RA*. The objective is to find
a neighborhood with a set of valid trajectories and an optimal path at the neighborhood’s center
instead of planning for a single path. However, when the algorithm can only find one feasible path
then the robust neighborhood is collapsed into a single trajectory. A collapsed neighborhood
occurs when the available resources approach their limits and, consequently, the drone must take
some allowable risk to reach its target.

Definition 1 (MTL Syntax). Let AP be the set of atomic propositions and I be a time interval
of R. The MTL φ formula is recursively defined using the following grammar [10]:

𝜑𝜑 ≔ 𝑇𝑇|𝑝𝑝|¬𝜑𝜑| 𝜑𝜑1⋁𝜑𝜑2|𝜑𝜑1⋀𝜑𝜑2| 𝜑𝜑1𝒰𝒰𝐼𝐼𝜑𝜑2 (1)

T is the Boolean True, p ∈ AP, ¬ is the Boolean negation, ⋁ and ⋀ are the logical OR and AND
operators, respectively. 𝒰𝒰𝐼𝐼 is the timed until operator and the interval 𝐼𝐼 imposes timing constraints
on the operator. Informally, 𝜑𝜑1𝒰𝒰𝐼𝐼𝜑𝜑2 means that 𝜑𝜑1 must hold until 𝜑𝜑2 holds, which must happen
within the interval 𝐼𝐼. The implication (⟹), Always (□), and Eventually (◊) operators can be
derived using the above operators.

Using the MTL syntax (Definition 1), we define the MTL specification of our problem of reach-
while-avoid-when-possible as follows.

Approved for Public Release; Distribution Unlimited.

7

𝜑𝜑 = ◊[0,𝑡𝑡𝑖𝑖𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡𝑟𝑟𝑎𝑎𝑖𝑖𝑛𝑛𝑡𝑡] 𝑞𝑞 ∧ □[0,𝑡𝑡𝑖𝑖𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡𝑟𝑟𝑎𝑎𝑖𝑖𝑛𝑛𝑡𝑡] (¬𝑢𝑢𝑛𝑛𝑠𝑠𝑎𝑎𝑓𝑓𝑢𝑢) ∧ □[0,𝑡𝑡𝑖𝑖𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡𝑟𝑟𝑎𝑎𝑖𝑖𝑛𝑛𝑡𝑡] �(𝑡𝑡𝑙𝑙𝑛𝑛𝑠𝑠𝑡𝑡𝑐𝑐𝑎𝑎𝑖𝑖𝑛𝑛1 >
𝑡𝑡ℎ𝑐𝑐𝑢𝑢𝑠𝑠ℎ𝑙𝑙𝑙𝑙𝑑𝑑1 ∧ … .∧ 𝑡𝑡𝑙𝑙𝑛𝑛𝑠𝑠𝑡𝑡𝑐𝑐𝑎𝑎𝑖𝑖𝑛𝑛𝑛𝑛 > 𝑡𝑡ℎ𝑐𝑐𝑢𝑢𝑠𝑠ℎ𝑙𝑙𝑙𝑙𝑑𝑑𝑛𝑛) ⟹ ¬𝑠𝑠𝑢𝑢𝑠𝑠𝑖𝑖𝑆𝑆𝑎𝑎𝑓𝑓𝑢𝑢� (2)
This formula requires the drone to reach the target terminal 𝑞𝑞 (i.e., liveness property) while always
avoiding being inside unsafe areas (i.e., safety property). When the available constraint1.
constraintn are above their predefined thresholds, it must always stay away from the semi-safe
areas (i.e., conditional safety property). Otherwise, the semi-safe areas need to be gradually
receded to free up some space for the drone to maneuver in to reach its target. We define a path
trajectory that satisfies the specification given in (2) to be a feasible trajectory. Otherwise, it is
infeasible. For our problem domain, this specification would be:

𝜑𝜑 = ◊[0,𝑑𝑑𝑡𝑡𝑎𝑎𝑑𝑑𝑑𝑑𝑖𝑖𝑛𝑛𝑡𝑡] 𝑞𝑞 ∧ □[0,𝑑𝑑𝑡𝑡𝑎𝑎𝑑𝑑𝑑𝑑𝑖𝑖𝑛𝑛𝑡𝑡] (¬𝑊𝑊𝑊𝑊 ∧ □[0,𝑑𝑑𝑡𝑡𝑎𝑎𝑑𝑑𝑑𝑑𝑖𝑖𝑛𝑛𝑡𝑡] �(𝑓𝑓 > 𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 ∧ 𝑡𝑡 < 𝑡𝑡𝑚𝑚𝑎𝑎𝑚𝑚) ⟹ ¬𝑉𝑉𝑊𝑊 ∧
¬𝐽𝐽𝑊𝑊� (3)

To precisely capture the MTL formula, each predicate 𝑝𝑝 ∈ 𝐴𝐴𝑃𝑃 is mapped to a subset of the
metric space S. Let 𝒪𝒪:𝐴𝐴𝑃𝑃 ⟶ 𝒫𝒫(𝑆𝑆) be an observation map for the atomic propositions. The
Boolean truth value of a formula 𝜑𝜑 with respect to the trajectory s at time t is defined recursively
using the MTL semantics directly reproduced as stated in [10]:

(𝑠𝑠, 𝑡𝑡) ≔ 𝑇𝑇 ⟺ 𝑇𝑇
∀ 𝑝𝑝 ∈ 𝐴𝐴𝑃𝑃, (𝑠𝑠, 𝑡𝑡) ≔ 𝒪𝒪 𝑝𝑝 ⟺ 𝑠𝑠𝑡𝑡 ∈ 𝒪𝒪(𝑝𝑝)
(𝑠𝑠, 𝑡𝑡) ≔ 𝒪𝒪 ¬𝜑𝜑 ⟺ ¬(𝑠𝑠, 𝑡𝑡) ∶= 𝒪𝒪 𝜑𝜑
(𝑠𝑠, 𝑡𝑡) ≔ 𝒪𝒪 𝜑𝜑1 ⋁𝜑𝜑2 ⟺ (𝑠𝑠, 𝑡𝑡) ≔ 𝒪𝒪 𝜑𝜑1 ⋁ (𝑠𝑠, 𝑡𝑡) ≔ 𝒪𝒪 𝜑𝜑2
(𝑠𝑠, 𝑡𝑡) ≔ 𝒪𝒪 𝜑𝜑1⋀𝜑𝜑2 ⟺ (𝑠𝑠, 𝑡𝑡) ≔ 𝒪𝒪 𝜑𝜑1 ⋀ (𝑠𝑠, 𝑡𝑡) ≔ 𝒪𝒪 𝜑𝜑2
(𝑠𝑠, 𝑡𝑡) ≔ 𝒪𝒪 𝜑𝜑1𝒰𝒰𝐼𝐼𝜑𝜑2 ⟺ ∃𝑡𝑡′ ∈ 𝑡𝑡 + 𝐼𝐼. (𝑠𝑠, 𝑡𝑡′) ≔ 𝒪𝒪 𝜑𝜑2

⋀ ∀ 𝑡𝑡′′ ∈ (𝑡𝑡, 𝑡𝑡′), (𝑠𝑠, 𝑡𝑡′′) ≔ 𝒪𝒪 𝜑𝜑1
In our problem domain, we have 6 atomic propositions including time, fuel, risk ranges (VR,

JR, and WR), and the target. To properly use the observation map semantics in the problem
domain, we compute time and fuel in terms of distance metric d, which is the Euclidian distance
between points 𝑝𝑝1,𝑝𝑝2, as:

 𝑑𝑑(𝑝𝑝1,𝑝𝑝2) = �(𝑥𝑥1 − 𝑥𝑥2)2 + (𝑦𝑦1 − 𝑦𝑦2)2 (4)
By using the drone’s velocity v, and the fuel consumption rate 𝑡𝑡𝑐𝑐𝑡𝑡 (fuel per distance), we

calculate the time and fuel in terms of distance as follows:

 𝑡𝑡 = 𝑑𝑑
𝑣𝑣
 (5)

 𝑓𝑓 = 𝑑𝑑 × 𝑡𝑡𝑐𝑐𝑡𝑡 (6)
To formally measure the robustness degree of 𝜑𝜑 (2) at the trajectory point s at time t, the

robustness semantics of 𝜑𝜑 is recursively defined as taken directly from [9]:

Approved for Public Release; Distribution Unlimited.

8

where ⊔ stands for maximum, ⊓ stands for minimum, 𝑝𝑝 ∈ 𝐴𝐴𝑃𝑃, and 𝑙𝑙,𝑢𝑢 ∈ ℕ. The robustness is
a real-valued function of the trajectory point s with the following important property stated in
Theorem 1.

Theorem 1 [9]: For any 𝑠𝑠 ∈ 𝑆𝑆 and MTL formula 𝜑𝜑, if ⟦𝜑𝜑⟧ (𝑠𝑠, 𝑖𝑖) is negative, then s does not
satisfy the specification 𝜑𝜑 at time i. If it is positive, then s satisfies 𝜑𝜑 at i. If the result is zero, then
the satisfaction is undefined.

By maximizing the robustness degree ⟦𝜑𝜑⟧, we can compute the control inputs (direction,
velocity) over the finite set of input sequences that provide us with a path solution to a given
problem instance, assuming that there is at least one feasible path. The generated sequence of
inputs can be simply considered as the sequence of path points, i.e., trajectory (s,t) to the target
that satisfy 𝜑𝜑 by having positive robustness degree ⟦(𝑠𝑠, 𝑡𝑡)⟧ > 0. The larger ⟦(𝑠𝑠, 𝑡𝑡)⟧, the more
robust the trajectory is to a perturbation of 𝜑𝜑. In other words, trajectory s can be disturbed at time
t while ⟦𝜑𝜑⟧ decreases, but remains positive. Consequently, the robustness degree ⟦𝜑𝜑⟧ of each path
trajectory creates a robust neighborhood around the trajectory that provides a set of trajectories
with less ⟦𝜑𝜑⟧, but still satisfy the original 𝜑𝜑.

The Signed Distance, 𝐷𝐷𝑖𝑖𝑠𝑠𝑡𝑡𝑑𝑑, is a domain-specific function that must be defined to reflect the
domain properties [9]. In this project, we define three functions to measure the distance from the
propositions of the target, the enemy set, and the resource limits (Figure 3). The target symbol
represents the target terminal while the blue circle is the drone. The red circle surrounded by
multiple circles represents the enemy, where cyan, orange, and red circles are the VR, JR, and WR,
respectively.

Definition 2 (Target 𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡 function): Given that 𝑞𝑞 is the target terminal of drone 𝑝𝑝 and r is its
range, the 𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡 between 𝑞𝑞 and 𝑝𝑝 at time i is defined as

𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡(𝑝𝑝𝑖𝑖, 𝑞𝑞) = 𝑑𝑑(𝑝𝑝𝑖𝑖, 𝑞𝑞) − 𝑐𝑐 (7)
Definition 3 (Enemy 𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡 function): Let 𝑝𝑝 be the drone, 𝑋𝑋 be the enemy set, and 𝜃𝜃 ≥ 0 be the

enemy speed. Then 𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡 between 𝑝𝑝 and 𝑋𝑋 at time i is defined for each risk range as follows:
 𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡𝑉𝑉𝑉𝑉(𝑝𝑝𝑖𝑖,𝑋𝑋) = min0≤𝑗𝑗≤|𝑋𝑋| d�𝑝𝑝𝑖𝑖, 𝑥𝑥𝑗𝑗� − (𝑥𝑥𝑗𝑗 .𝑉𝑉𝑊𝑊 + 𝜃𝜃)17T (8)

 𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡𝐽𝐽𝑉𝑉(𝑝𝑝𝑖𝑖,𝑋𝑋) = min0≤𝑗𝑗≤|𝑋𝑋| d�𝑝𝑝𝑖𝑖, 𝑥𝑥𝑗𝑗� − (𝑥𝑥𝑗𝑗 . 𝐽𝐽𝑊𝑊 + 𝜃𝜃) (9)

 𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡𝑊𝑊𝑉𝑉(𝑝𝑝𝑖𝑖,𝑋𝑋) = min0≤𝑗𝑗≤|𝑋𝑋| d�𝑝𝑝𝑖𝑖, 𝑥𝑥𝑗𝑗� − (𝑥𝑥𝑗𝑗 .𝑊𝑊𝑊𝑊 + 𝜃𝜃) (10)

Approved for Public Release; Distribution Unlimited.

9

With respect to the target q, dist is defined as the distance from the drone to the closest edge of
the region defined by the target’s terminal range. On the other hand, the enemy dist function is
evaluated with respect to the drone 𝑝𝑝 and the set of enemies 𝑋𝑋 to a triple that represents the
distances to the range of the closest enemy x to p (Figure 3). In addition, we use the velocity of a
given enemy 𝜃𝜃 such that each risk range is extended with the enemy’s velocity as represented by
dotted circles around colored enemy ranges (Figure 3). The terminal range for a moving target
must be shrunk, rather than extended, by the velocity of the target, assuming that the target is
running away from the drone.

Figure 3: The structure of the problem domain

Lastly, we define a depth function to measure the distance between the current position of the
drone and its resource limit. Each drone has a pre-specified amount of fuel and time to reach its
target. We assume that each mission starts at time 0 with fuel 𝑓𝑓𝑚𝑚𝑎𝑎𝑚𝑚 and each drone has time 𝑡𝑡𝑚𝑚𝑎𝑎𝑚𝑚,
the deadline, to reach its target. To calculate the robustness of a given configuration of drones with
allotted fuel capacities, fuel consumption rates, and deadlines, we redefine each constraint in terms
of distance using equations (5) and (6). Given that a drone moves with velocity 𝑣𝑣, we define two
regions centered at the target q with radius 𝑣𝑣 × 𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 and 𝑣𝑣 × 𝑡𝑡𝑚𝑚𝑎𝑎𝑚𝑚 to define the farthest positions
that the drone could travel while still being able to reach its target. With these regions defined, we
can define the function depth.

Definition 4 (Resource depth function): Given that 𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛, 𝑡𝑡𝑚𝑚𝑎𝑎𝑚𝑚 are the resource thresholds,
𝑑𝑑𝑢𝑢𝑝𝑝𝑡𝑡ℎ𝑓𝑓 and 𝑑𝑑𝑢𝑢𝑝𝑝𝑡𝑡ℎ𝑡𝑡 functions for the drone 𝑝𝑝 at time i are defined as:

𝑑𝑑𝑢𝑢𝑝𝑝𝑡𝑡ℎ 𝑓𝑓(𝑝𝑝𝑖𝑖) =�
(𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛)− (𝑑𝑑(𝑝𝑝𝑖𝑖 , 𝑞𝑞) − 𝑐𝑐) × crt 𝑖𝑖𝑓𝑓 𝑝𝑝𝑖𝑖 ∉ 𝒪𝒪(𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛)

0 𝑙𝑙𝑡𝑡ℎ𝑢𝑢𝑐𝑐𝑒𝑒𝑖𝑖𝑠𝑠𝑢𝑢
 (11)

Approved for Public Release; Distribution Unlimited.

10

𝑑𝑑𝑢𝑢𝑝𝑝𝑡𝑡ℎ 𝑡𝑡(𝑝𝑝𝑖𝑖) =�
(𝑡𝑡𝑚𝑚𝑎𝑎𝑚𝑚 − 𝑡𝑡𝑖𝑖) −

(𝑑𝑑(𝑝𝑝𝑖𝑖,𝑞𝑞)−𝑟𝑟)
𝑣𝑣

 𝑖𝑖𝑓𝑓 𝑝𝑝𝑖𝑖 ∉ 𝒪𝒪(𝑡𝑡𝑚𝑚𝑎𝑎𝑚𝑚)
0 𝑙𝑙𝑡𝑡ℎ𝑢𝑢𝑐𝑐𝑒𝑒𝑖𝑖𝑠𝑠𝑢𝑢

 (12)

The depth() function measures the distance to the closest edge of the region defined by a
constraint centered on the target. It should be noted that the regions are 3D with respect to time.
Therefore, the pizza slice shown in Figure 3 would be shrunk from the outer edge over time.

Using the dist and depth functions, the MTL robustness degree of 𝜑𝜑 in equation (3) can be
point-wise computed at each position in the world state to solve the following path planning
problem:

𝜌𝜌 (𝑠𝑠0,𝑞𝑞) = 𝑠𝑠𝑖𝑖𝑛𝑛 ∑𝑡𝑡(𝑠𝑠𝑖𝑖, 𝑠𝑠𝑖𝑖+1) − ⟦(𝑠𝑠𝑖𝑖, 𝑠𝑠𝑖𝑖+1)⟧ (13-1)
𝑠𝑠. 𝑡𝑡. 0 ≤ 𝑖𝑖 < 𝑡𝑡𝑚𝑚𝑎𝑎𝑚𝑚 (13-2)

𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝑓𝑓 ≤ 𝑓𝑓𝑚𝑚𝑎𝑎𝑚𝑚 (13-3)
𝜖𝜖𝑚𝑚𝑖𝑖𝑛𝑛 ≤ ⟦𝜌𝜌 ⟧ ≤ 𝜖𝜖𝑚𝑚𝑎𝑎𝑚𝑚 (13-4)

 (14)

(15)

where 𝑡𝑡(𝑠𝑠0, 𝑠𝑠𝑖𝑖) is a cost function similar to the f function in A*. Equations (13-2) and (13-3)
represent the resource limitation. 𝜖𝜖𝑚𝑚𝑖𝑖𝑛𝑛 and 𝜖𝜖𝑚𝑚𝑎𝑎𝑚𝑚 are the desired minimum and maximum
robustness that make equation (13-4) an optional constraint in the problem. When 𝜖𝜖𝑚𝑚𝑖𝑖𝑛𝑛 > 0, it
enforces a minimum safety margin around enemies, while 𝜖𝜖𝑚𝑚𝑎𝑎𝑚𝑚 > 0 attempts to limit the path
length when the available resources are extremely large.

3.2.1.1 RA* Algorithm
The A* algorithm represents the world state as a grid map divided into squares. Each square is

evaluated either as passable (safe and reachable), impassable when it is either occupied by one or
more enemies, or unreachable when the drone does not have enough resources to reach it.
However, the impassable squares that are occupied by the VR or JR of enemies can become
passable when the drone cannot afford to avoid them given its limited resources.

Approved for Public Release; Distribution Unlimited.

11

RA* uses the same logic as the standard A*. The modified functions are presented in Algorithm
1. In line 3 of the neighbors function, the node is included into the search space only when the
robustness is greater than or equal to zero. Our algorithm uses the MTL robustness to classify
nodes in the gird into passable or impassible based on their satisfaction of the mission safety
constraints. Only passable nodes are used to feed the open queue in RA*. The robustness of the
liveness property is used in the h function to encourage the algorithm to expand its search towards
positions closer to the target.

Assumption 1: If drone velocity is 𝑣𝑣 and the max velocity of the enemy set is 𝑣𝑣′ = 𝑠𝑠𝑎𝑎𝑥𝑥𝑚𝑚∈𝑋𝑋𝑣𝑣𝑚𝑚,

then the drone is assumed to be faster 𝑣𝑣 > 𝑣𝑣′ by at least 20%.
Assumption 2: If the drone vision range is 𝑉𝑉𝑊𝑊 and the enemy set’s max vision range is 𝑉𝑉𝑊𝑊′ =

𝑠𝑠𝑎𝑎𝑥𝑥𝑚𝑚∈𝑋𝑋𝑉𝑉𝑊𝑊𝑚𝑚, then the drone has bigger vision range 𝑉𝑉𝑊𝑊 > 𝑉𝑉𝑊𝑊′.
Assumption 3: Given target 𝑞𝑞 and enemy set 𝑋𝑋, q is not part of the enemy set 𝑞𝑞 ∉ 𝑋𝑋.

The robustness of the safety property (□[0,𝑑𝑑𝑡𝑡𝑎𝑎𝑑𝑑𝑑𝑑𝑖𝑖𝑛𝑛𝑡𝑡] (¬WR)) is measured at each position of the

search space since it must hold at all path points. To measure the robustness of the safety property
for pos, we use the MTL robustness semantics with duration of [1, 1] and enemy set X is found in
equation (14). In order to apply the robustness semantic, the always operator □ is converted into
the Until operator using the conversion rules in [11]. Then, the robustness becomes a minimum
function of the robustness of True value and the dist function in equation (10). Since the robustness
of True by the semantics is positive infinity, the robustness function becomes about the dist
function of WR.

Line 4 in robustness_safety in Algorithm 1 defines the dist function using equation (10) to
measure the distance from the WR of the enemy set. The positions inside the WR would have
negative robustness, preventing the drone from taking paths through them. Positions with positive
numbers are considered passable. Their robustness degree depends on how far they are from the
boundary of the WR.

The conditional safety property � □[0,𝑑𝑑𝑡𝑡𝑎𝑎𝑑𝑑𝑑𝑑𝑖𝑖𝑛𝑛𝑡𝑡] �(𝑓𝑓 > 𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 ∧ 𝑡𝑡 < 𝑡𝑡𝑚𝑚𝑎𝑎𝑚𝑚) ⟹ ¬𝑉𝑉𝑊𝑊 ∧ ¬𝐽𝐽𝑊𝑊��
evaluates the ability of the drone to avoid being seen or jammed by enemies considering its current
time and fuel. It avoids an enemy JR and VR only when it has sufficient resources to do so,
otherwise these areas are included in the search space as passable positions for the drone. The
𝑑𝑑𝑢𝑢𝑝𝑝𝑡𝑡ℎ functions, in equations (11) and (12), measure how far away the drone is from being out of
time or fuel if it chooses to pass through position pos. The safety margin, i.e., the minimum
robustness 𝜖𝜖𝑚𝑚𝑖𝑖𝑛𝑛, is dynamically computed using the results of 𝑑𝑑𝑢𝑢𝑝𝑝𝑡𝑡ℎ 𝑓𝑓 and 𝑑𝑑𝑢𝑢𝑝𝑝𝑡𝑡ℎ 𝑡𝑡 (line 1 in
robustness_safety). The safety margin is decreased gradually with the time and fuel and becomes
negative when either one of the resources starts approaching its limits. In lines 2 and 3 of function
robustness_safety, the updated safety margin would be subtracted from the VR and JR to allow
the drone pass through semi-safe areas. The dist functions in lines 2 and 3 return positive if the
drone obeys the constraint of the minimum robustness and returns negative otherwise. The
robustness of the conditional safety is computed in equation (15) using the MTL robustness
semantics for the time duration of [1, 1] and enemy set X. The robustness function becomes about

Approved for Public Release; Distribution Unlimited.

12

finding the maximum values of the negative of 𝑑𝑑𝑢𝑢𝑝𝑝𝑡𝑡ℎ 𝑓𝑓 and 𝑑𝑑𝑢𝑢𝑝𝑝𝑡𝑡ℎ 𝑡𝑡 and the minimum of dist
functions of equations (8) and (9).

The MTL robustness semantics in equation (15) is mapped into line 5 of robustness_safety
function to decide if position pos is passable or impassable. Equation (15) would return negative
values if the point pos is inside the jamming and vision ranges (JR, VR) of the closest enemy and
the drone’s time and fuel are above thresholds. On the other hand, it would return positive if and
only if pos is outside the VR and JR of all enemies. In case the fuel or time are approaching their
limits, equation (15) would always return zero when pos is inside VR or JR of enemies. According
to Theorem 1, zero is undefined robustness, which RA* would accept only when there are
insufficient resources to reach the target while avoiding areas with conditional safety property. By
using this technique, MTL robustness allows runtime risk assessment of the VR and JR, which
completely depends on the availability of resources.

Line 6 in robustness_safety computes the final robustness degree of pos as the min value of the
safety and conditional safety properties. A negative value means the robustness is negative and
pos is not inserted into the search space (line 3 of the neighbors function). Otherwise, the
robustness degree is either positive or zero and pos is passable and considered for path planning
search. By preferring paths with larger safety robustness in line 5 of the neighbors function, the
algorithm generates robust paths to risky areas.

In RA*, ◊[0,𝑑𝑑𝑡𝑡𝑎𝑎𝑑𝑑𝑑𝑑𝑖𝑖𝑛𝑛𝑡𝑡] 𝑞𝑞 evaluates the reachability of the target 𝑞𝑞 from position pos in the
robustness_liveness function. It depends on the dist function in equation (7), which returns a
positive real number if pos is outside the terminal range of q and returns negative otherwise. Then,
h in line 6 of neighbors function would have negative value when pos is inside the target area
which decreases f in line 7. To guarantee that the algorithm expands positions with shorter
distances to the target, the OPEN queue of A* is ordered based on the lowest (most robust) f values
of searchable positions.

Algorithm 1 Functions needed for RA* Search
function neighbors(p, 𝜖𝜖𝑚𝑚𝑖𝑖𝑛𝑛 39T, ϵmax 48T)
1- neighbors = neighbors_of(p,1)
2- for n ∈ 39T46T neighbors
3- if(robustness_safety(n, X, 𝜖𝜖𝑚𝑚𝑖𝑖𝑛𝑛 39T, ϵmax 46T)>=0)
4- n.r=robustness_safety(n, X, 𝜖𝜖𝑚𝑚𝑖𝑖𝑛𝑛 39T, ϵmax 46T)
5- n.g = d(n,p)- n.r
6- n.h= robustness_liveness(neighbor, q)
7- n.f = n.g + n.h
8- n.parent = p
9- return neighbors
function robustness_safety(pos, X, 𝜖𝜖𝑚𝑚𝑖𝑖𝑛𝑛 39T, ϵmax 39T)
1- 𝜖𝜖𝑚𝑚𝑖𝑖𝑛𝑛= min�𝜖𝜖𝑚𝑚𝑖𝑖𝑛𝑛,𝑑𝑑𝑢𝑢𝑝𝑝𝑡𝑡ℎ 𝑓𝑓(𝑝𝑝𝑙𝑙𝑠𝑠)− 𝜖𝜖𝑚𝑚𝑖𝑖𝑛𝑛,𝑑𝑑𝑢𝑢𝑝𝑝𝑡𝑡ℎ 𝑡𝑡(𝑝𝑝𝑙𝑙𝑠𝑠) − 𝜖𝜖𝑚𝑚𝑖𝑖𝑛𝑛�
2- 𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡𝑉𝑉𝑉𝑉(𝑝𝑝𝑙𝑙𝑠𝑠,𝑋𝑋) = 𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡𝑉𝑉𝑉𝑉(𝑝𝑝𝑙𝑙𝑠𝑠,𝑋𝑋) − 𝜖𝜖𝑚𝑚𝑖𝑖𝑛𝑛
3- 𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡𝐽𝐽𝑉𝑉(𝑝𝑝𝑙𝑙𝑠𝑠,𝑋𝑋) = 𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡𝐽𝐽𝑉𝑉(𝑝𝑝𝑙𝑙𝑠𝑠,𝑋𝑋) − 𝜖𝜖𝑚𝑚𝑖𝑖𝑛𝑛
4- safety =𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡𝑊𝑊𝑉𝑉(𝑝𝑝𝑙𝑙𝑠𝑠,𝑋𝑋)
5-con_safety=

Approved for Public Release; Distribution Unlimited.

13

max�
𝑑𝑑𝑢𝑢𝑝𝑝𝑡𝑡ℎ 𝑓𝑓(𝑝𝑝𝑙𝑙𝑠𝑠),𝑑𝑑𝑢𝑢𝑝𝑝𝑡𝑡ℎ 𝑡𝑡(𝑝𝑝𝑙𝑙𝑠𝑠),

min �𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡𝑉𝑉𝑉𝑉(𝑝𝑝𝑙𝑙𝑠𝑠,𝑋𝑋),𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡𝐽𝐽𝑉𝑉(𝑝𝑝𝑙𝑙𝑠𝑠,𝑋𝑋)�
�

6-return min (safety,con_safety, 𝜖𝜖𝑚𝑚𝑎𝑎𝑚𝑚)
function robustness_liveness(pos, q)
1- return 𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡(𝑝𝑝𝑙𝑙𝑠𝑠, 𝑞𝑞)

3.2.1.2 RHS
The loop function (Algorithm 2) of the drone (agent) moves the drone on the path and monitors

robustness simultaneously. The drone’s sensor detects enemies when they are within its visual
range. The violate_robustness function (line 9 of loop) checks if the robustness of the current path
is violated by newly detected information. It iterates over the current path points, re-evaluates the
robustness of the safety property given available enemy information and the world state, and
returns the first invalid path point, i.e., critical point cp. A violation calls RHS (line 12) to find a
replaceable trajectory inside the robust neighborhood. To make a quick decision about the
validation of the robust neighborhood, RHS checks the validity of the neighbors of cp at the edges
of the neighborhood using the cp’s robustness degree to identify these edges (lines 1-6 in RHS).
The RHS is a pure heuristic search for finding a valid trajectory inside the robust neighborhood
with a minimum robustness of zero. Essentially, the heuristic search concentrates on quickly and
effectively finding a valid trajectory as an immediate reaction against moving enemies. However,
when there is no valid trajectory inside the robust neighborhood, RA* is recalled, generating a new
path with its robust neighborhood considering all enemies that can be seen (line 14).

Algorithm 2 Functions needed for MTL-Robustness Monitoring
function loop()
1- X =sensor_results
2- If 𝜌𝜌=∅
3- 𝜌𝜌 ←path generated by MTL_Robustness_Based_A*
4- If 𝜌𝜌=∅
5- Agent.Stop() // no path
6- Else
7- If sensor_results != ∅
8- X= X ∪ sensor_results
9- cp=violate_robustness(𝜌𝜌,X,0, ϵmax)
10- If cp≠null
11- s0= drone_position
12- 𝜌𝜌= RHS(s0,cp, 𝜌𝜌, 0, ϵmax)
13- If 𝜌𝜌=null
14- 𝜌𝜌 ←re-plan by RA*
15- Agent.move(𝜌𝜌)
function violate_robustness(𝜌𝜌,X, ϵmin, ϵmax)
1- for pos ∈ 𝜌𝜌
2- if robustness_safety(pos, X,0, ϵmax)<0

Approved for Public Release; Distribution Unlimited.

14

3- return pos
4- return null

function RHS(s0,cp, 𝜌𝜌, ϵmin, ϵmax)
1- neighbors = neighbors_of(cp, cp.r)
2- for each pos ∈ neighbors
3- if robustness_safety(pos, X,0, ϵmax)<0
4- neighbors.remove(pos)
5- if neighbors=null
6- return null
7- p= s0
8- open←p
9- while 𝑙𝑙𝑝𝑝𝑢𝑢𝑛𝑛 ≠ ∅
10- p= pop(open)
11- if(dist(p,q)==r)
12- return construct_path(p)
13- closed←p
14- for n ∈ neighbors(p,0, ϵmax)
15- if n ∉ open
16- n.h= robustness_liveness(n, q)-n.r
16- open←(n)
17- return null

By using MTL robustness to plan and monitor paths, the generated paths satisfy the initial
mission constraints under all circumstances. However, when the drone has smaller visual range
than the enemies, it might be discovered by one or more enemies before it sees them. This case
can be dealt with as a special case by considering these areas as temporarily passable allowing the
drone to escape the immediate risk towards the target. This obviously violates the safety property,
but that is because of the physical capabilities of the drone and not related to the path planning and
monitoring processes.

Figure 4 illustrates the approach using the Rassim simulator where the drone has unlimited time
and fuel to reach its target (deadline=∞, fuel=∞, 𝑣𝑣 =100, ϵmin = 𝑣𝑣, ϵmax = 𝑣𝑣):

𝜑𝜑 = ◊[0,∞] 𝑞𝑞 ∧ □[0,∞] (¬WR) ∧ □[0,∞] �(∞ > 𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 ∧ 𝑡𝑡 < ∞) ⟹ ¬𝑉𝑉𝑊𝑊 ∧ ¬𝐽𝐽𝑊𝑊�

Approved for Public Release; Distribution Unlimited.

15

Figure 4: An example of RA* utilizes the robust neighborhood

Pink represents the planned path while green represents the path traversed by the drone to reach
its current position. The robust neighborhood is shown in blue around the path. At time t0, the
drone detects enemy E1 and updates its specification to become: 𝑋𝑋 = 𝐸𝐸1. RA* finds a path that
avoids enemies in 𝑋𝑋. At t1, it sees E2, which is a mobile enemy, and 𝑋𝑋 becomes {𝐸𝐸1,𝐸𝐸2}. Since
E2 invalidates the whole robust neighborhood, RA* is recalled to find another path with a new
robust neighborhood. The drone sees E3 and 𝑋𝑋 becomes {𝐸𝐸1,𝐸𝐸2,𝐸𝐸3}, but part of the neighborhood
is still valid. Here, RHS finds a valid trajectory to the target without doing replanning.

The case of limited resources is shown in Figure 5. Here, the mission specification is
(deadline=25𝑠𝑠𝑠𝑠, fuel=50𝑔𝑔, crt=0.1 g/ms, 𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 = 5𝑔𝑔, 𝑣𝑣 =100, ϵmin = 𝑣𝑣, ϵmax = 𝑣𝑣):

𝜑𝜑 = ◊[0,25] 𝑞𝑞 ∧ □[0,25] (¬WR) ∧ □[0,25] �(𝑓𝑓 > 5 ∧ 𝑡𝑡 < 25) ⟹ ¬𝑉𝑉𝑊𝑊 ∧ ¬𝐽𝐽𝑊𝑊�

Obviously, the drone cannot reach its target without accepting some risk. At t0, the drone accepts
some risk for the VR of enemy E1. At t1, it tries to avoid E2, but it continues moving toward its
path. Then, the drone evaluates the robustness of its current path. Since the deadline at t1 is
approaching, the path becomes robust despite the moving enemy and any further detected enemies.
Therefore, the drone stops attempting to avoid E2 and takes the direct path to the target without
replanning when it saw enemy E4.

t2

t1 t0

Approved for Public Release; Distribution Unlimited.

16

Figure 5: RA* path planning with limited resources

3.2.1.3 Evaluation
The main motivation of RA* [12] is to increase the possibility of mission completion in an

adversarial world when the drone does not have sufficient resources to completely avoid all
hazardous areas in presence of mobile enemies. Enhancing A* with MTL robustness helps to find
a balance between risk avoidance and resource depletion. To show the effectiveness of the
approach, we compare the average of planning time, travel time (i.e., path length), and the time
spent inside risky areas of the A* algorithm and RA* in 100 randomly generated scenarios with
static and moving enemies. We built a random scenario generator for Rassim to test our algorithm.
The worlds are setup as 3000 × 1500 cell grids. The scenario generator randomly places the target,
drone, and enemy assets using a normal distribution with multiple values of the standard deviation
and mean using the world width and height. Killers are selected with a 60% probability, Jammers
with a 20% probability, and Radars with a 20% probability. We initially set the min and max
accepted robustness, ϵmin and ϵmax, to the drone velocity. The experiments are conducted on a
quad-core Intel i7 3.4GHz processor with 16GB RAM. We run the same scenarios with unlimited,
limited (100 seconds), and insufficient (50 seconds) time. The results are shown in Table 1.

With unlimited resources, RA* successfully accomplishes the mission in all scenarios without
accepting risk except in two cases, where enemies construct a virtual wall in front of the target.
The drone was unable to reach its target without breaking through the VR and JR of enemies. With
50 seconds, RA* was unable to find feasible paths in 4% of the scenarios. The failed missions
occurred because of the distribution of the enemies with WR. Since the drone must avoid WRs
regardless of its resource condition, it ran out of time before reaching the target.

t0 t1

t2 t3

Approved for Public Release; Distribution Unlimited.

17

Table 1: Comparison between A* and RA* in seconds
Avg. Planning

Time
Avg. Travel

Time
Avg. Accepted

Risk
Mission

Completion
A*

(Unlimited
Resources)

13.18 29.56 1.8676 98%

RA*
(Unlimited

Resources)

5.91 26.86 0.1022 100%

A*
(Limited

Resources)

10.36 26.71 1.227 90%

RA*
(Limited

Resources)

3.798 25.48 0.4948 100%

A*
(Insufficient

Resources)

7.129 25.01 0.6444 84%

RA*
(Insufficient

Resources)

2.499 23.43 0.509 96%

The average planning time of RA* in all cases is less than A*, because it prioritizes the drone
safety by avoiding paths in narrow passages between enemies, while A* allows the drone to pass
between enemies. Thus, A* sometimes traps the drone inside moving enemy ranges, consequently
increasing replanning time. On the other hand, the RA* reduces replanning attempts by adjusting
the trajectory of the current path from the robust neighborhood. Therefore, RA* generates safer,
shorter, and faster paths overall than A* with and without limited resources.

With A*, the drone was unable to accomplish its mission in 10% and 16% of the scenarios with
limited and insufficient resources, respectively. One possible reason for this occurrence is that
when the drone is trapped inside a mobile enemy range for long time while trying to find an optimal
path, it experiences resource depletion before reaching the target. Another reason may be that when
the drone consumes its resources to completely avoid all enemies, it has no fuel or time left to
accomplish the mission. In addition, the average path length (i.e., travel time) for paths generated
by A* in both cases is surprisingly longer than the average length for RA* paths. In fact, A*
attempts to find the shortest path, which makes its paths very tight around enemies. With mobile
enemies, tight paths face replanning very frequently, increasing their overall lengths.

Although A* attempts to avoid all risky areas, the drone takes more risk with A* than with RA*,
with and without limited resources. This situation is apparent when scenarios surround the drone
with multiple enemies, trapping it. One scenario with moving enemies is shown in Figure 6. At
time t1 and t2, A* spends significant time finding a valid path and stays in its position until enemies
E2 and E3 move away from the optimal path. In similar scenarios, if enemies E2 or E3 move toward
the drone, the drone will be trapped inside the risky area until the enemy moves away, which may
cost the drone its life.

Approved for Public Release; Distribution Unlimited.

18

Figure 6: A*path planning in presence of mobile enemies

Figure 7 shows how RA* reacts to the same scenario in Figure 6 with unlimited resources. RA*
can find a valid path without accepting any risk. The same scenario with limited resources has
been shown in the previous section (Figure 5).

Figure 7: RA* plans with unlimited resources

t0 t1

t2 t3

t3

t0

t2

t1

Approved for Public Release; Distribution Unlimited.

19

3.2.2 Pattern Learning Module

In RA*, the robustness is computed based on the current observation of the enemy state without
considering its future states assuming that the enemy is a static obstacle at each time step. This is
impractical because it forces the drone to be reactive through re-planning whenever the sensor has
detected a change. Realistically, the motion model of each mobile enemy is stochastic and needs
to be carefully predicted through a well-designed prediction model. Such a prediction model can
be utilized by the path planning algorithm to find more robust and stable paths. Hence, we extended
our previous RA* algorithm to create Predictive-RA*, which enables the drone to behave in an
anticipatory manner, weigh expected risk, and make decisions proactively rather than reactively
where it might be too late to act with sufficiently low risk.

We developed a Pattern Learning Framework (PLF) for establishing relationships between the
drone’s state and the enemy’s action pairs. By observing enemies in a state space, the PLF can
identify behavioral models that explain the exhibited actions of different enemies. An offline
learning technique infers these models using IRL, then the drone can utilize the PLF in an online
setting to match the observed behavior of perceived enemies with the previously learned models.
The assignment of these models helps drones equipped with the PLF to better anticipate the future
actions of the observed enemies in the environment and safely plan its path to the target.

Our proposed framework PLF consists of two modules (Figure 8): the offline learning module
and the online learning module. The offline learning module makes two assumptions about the
observed enemies. The first assumption is that the enemy’s behavior is Markovian, and therefore,
makes its decisions based solely on its current conception of the world state. The second
assumption is that enemies are purely-reactive. A purely-reactive agent makes its decisions based
on the state of a different agent: its actions are assumed to be responding to the state of another
agent. In our case, the enemy agent is assumed to be responding to the drone. Therefore, behavioral
analysis is conducted with the assumption that exhibited behavior by the enemy is either a natural
progression of its own state, or a response to a change in the observing drone’s state. Based on the
above assumptions, the world state for the enemy agent can be represented as the position and
velocity of itself and the drone that is inside its detection range. The offline learning module is
implemented using IRL to generate reward functions that attempt to explain the exhibited behavior
given the trajectories produced by an enemy operating under a predefined behavioral model. This
enemy agent is presumed to be acting optimally according to a particular policy and is modeled as
a Markov Decision Process (MDP). Using the derived reward functions from the offline IRL
module, the online learning module classifies newly observed enemies based on which reward
function their behavior maximizes using an MDP to represent the enemy model and a KF to
anticipate its next state.

Approved for Public Release; Distribution Unlimited.

20

Figure 8: Pattern Learning Framework (PLF)

3.2.2.1 Markov Decision Process (MDP)
A Markov decision process (MDP) [13] is a formalization for modeling decision making. An

MDP is represented by 𝑀𝑀 = (𝑆𝑆,𝐴𝐴,𝑃𝑃, 𝛾𝛾, 𝑐𝑐), where S is a set of states, A is a set of actions, P is a
transition probability function for determining the subsequent state after taking a particular action
in a particular state, γ is a discount factor that ranges from [0,1], and r is the reward function 𝑐𝑐: 𝑆𝑆 ×
𝐴𝐴 → 𝑊𝑊. A policy 𝜋𝜋: 𝑆𝑆 → 𝐴𝐴 is a mapping from a state to an action. An optimal policy π* is one such
that ∑ 𝛾𝛾𝑡𝑡𝑐𝑐(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡)𝑁𝑁

𝑡𝑡=0 is maximized, where the MDP has a finite horizon of N steps and 𝜋𝜋∗(𝑠𝑠𝑡𝑡) =
𝑎𝑎𝑡𝑡.

The classical problem in MDPs assumes that all of the five elements are known and consists of
finding an optimal policy that gives, for every state, the action that should be selected in order to
maximize the reward function. For our purpose, we use an MDP to represent the enemy state such
that its r is generated by the IRL during the offline learning phase and then used in the online
learning setting to predict its future sequence of states.

3.2.2.2 Inverse Reinforcement Learning (IRL)
IRL [14] is a framework built on Markov Decision Processes (MDPs), where the goal of the

apprentice agent is to find a reward function from expert demonstrations that could explain the
expert’s behavior [15]. In other words, the IRL problem is reverse-engineering a reward function
that describes the behavior of an expert. In this project, an IRL agent has to determine a reward
function given the trajectories an enemy has taken, assuming the enemy is acting optimally
according to some MDP compliant policy.

In general, IRL occurs in a batch process where the dynamics, (i.e. transition probabilities
function) P of the MDP, is unknown and where no interaction with the MDP is possible while
learning. Thus, only transitions sampled from an MDP and without rewards (𝑆𝑆,𝐴𝐴,𝑃𝑃, 𝛾𝛾) are
available to the learner. Most MDP-based IRL approaches assume that there is a set of m features
associated with every state that fully determine the value of the reward function r. Since finding a
general form solution for r is very difficult in this project, we assume it to be a linear combination

Approved for Public Release; Distribution Unlimited.

21

of a set of domain-specific features. Thus, for a given state S, the reward can then be expressed as
the dot product 𝜙𝜙𝑆𝑆 .𝛼𝛼 of a feature vector 𝜙𝜙�⃗ 𝑺𝑺 = [𝜙𝜙1,𝜙𝜙2, . . ,𝜙𝜙𝑚𝑚] and a weight vector �⃗�𝛼 =
[𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝑚𝑚]. In this case, the IRL problem consists of estimating the values of the weight
vector. The reader can refer to [14] for further details.

3.2.2.3 Kalman Filter (KF)
The Kalman Filter (KF) [16] was devised to allow multiple sources of uncertain information to

be combined to reduce uncertainty. In principle, a KF works by assuming that the uncertainty can
be represented using a Gaussian distribution (in as many dimensions as needed). By looking for
the overlap between the individual distributions, the result is another Gaussian distribution with
potentially a different mean and hopefully a smaller variance. In this project, we use the KF to
model the enemy motion by predicting the changes to its position and velocity. After that, the
sensor readings, i.e. observations, are combined with this prediction through the MDP to update
the enemy state.

The KF operates under the following assumptions:
i) The Markov assumption
ii) System with linear dynamics
iii) Gaussian noise

Given the above assumptions, the KF can estimate the next enemy state (position and velocity)
as a Gaussian distribution. The process the KF uses is documented below:

𝑠𝑠𝑡𝑡𝐴𝐴 = 𝐹𝐹𝑡𝑡𝑠𝑠′𝑡𝑡−∆𝑡𝑡𝐴𝐴 + 𝐵𝐵𝑡𝑡𝑢𝑢�⃗ 𝑡𝑡 (16)
𝑃𝑃𝑡𝑡 = 𝐹𝐹𝑡𝑡𝑃𝑃′𝑡𝑡−∆𝑡𝑡𝐹𝐹𝑡𝑡𝑇𝑇 + 𝑄𝑄𝑡𝑡 (17)

The above two equations are used for the prediction of the enemy state at time t based on
observations from time t – ∆t, which means ∆t time has passed between the previous and current
state. To account for a changing direction and magnitude of motion in (16), the control vector 𝑢𝑢�⃗ 𝑡𝑡
and control matrix 𝐵𝐵𝑡𝑡 are used. For this environment, the control vector 𝑢𝑢�⃗ 𝑡𝑡 represents the
acceleration of the enemy agent, which itself is dictated by its behavioral classification. The
application of the acceleration vector will cause the enemy state to change. The control matrix 𝐵𝐵𝑡𝑡
in equation (16) causes this change, and its exact composition is later defined.

The matrix 𝑃𝑃𝑡𝑡 is the covariance matrix. The covariance matrix is a symmetric matrix that stores
the variances of the variables on its diagonal, and the covariance between variables off of the
diagonal:

𝑃𝑃𝑡𝑡 = �
𝛴𝛴𝑝𝑝,𝑝𝑝 𝛴𝛴𝑝𝑝,𝑣𝑣
𝛴𝛴𝑣𝑣,𝑝𝑝 𝛴𝛴𝑣𝑣,𝑣𝑣

� (18)

In equation (18), the form 𝛴𝛴𝑚𝑚,𝑦𝑦 denotes the covariance between x and y. When the expression is
in the form 𝛴𝛴𝑚𝑚,𝑚𝑚 it denotes the variance of x. Exploiting a principle of matrices allows the values
in the covariance matrix to be updated according to the system dynamics:

𝐶𝐶𝑙𝑙𝑣𝑣(𝐴𝐴𝑋𝑋) = 𝐴𝐴𝑋𝑋𝐴𝐴𝑇𝑇 (19)

Approved for Public Release; Distribution Unlimited.

22

Substituting the prediction matrix 𝐹𝐹𝑡𝑡 for the matrix A and the value of 𝑃𝑃𝑡𝑡 at time t – ∆t for the
matrix X, the first half of equation (17) is obtained. The second term 𝑄𝑄𝑡𝑡 in (17) is a covariance
matrix that accounts for the process noise, which for our purposes helps to account for the change
in velocity the enemy might take during the ∆t time interval.

The Kalman gain function determines how much to change from the prediction of the state at
time t to the observation at time t. The gain function is defined as:

𝐾𝐾′ = 𝑃𝑃𝑡𝑡𝐻𝐻𝑡𝑡𝑇𝑇(𝐻𝐻𝑡𝑡𝑃𝑃𝑡𝑡𝐻𝐻𝑡𝑡𝑇𝑇 + 𝑊𝑊𝑡𝑡)−1 (20)
The matrix 𝐻𝐻𝑡𝑡 is responsible for converting from the state space to the measurement space. In

the discussed state space, the state space and measurement space are identical (position and
velocity pairs), which means the 𝐻𝐻𝑡𝑡 matrix will be an identity matrix for the purposes of this paper.
The matrix 𝑊𝑊𝑡𝑡 is the noise of the sensor reading. This diagonal matrix contains the variances of
normal distributions for the corresponding dimensions. The value of 𝐻𝐻𝑡𝑡𝑃𝑃𝑡𝑡𝐻𝐻𝑡𝑡𝑇𝑇 represents the
expected sensor readings for the covariance matrix 𝑃𝑃𝑡𝑡 using the identity in equation (19). The gain
function is used to obtain a better approximation of the current state and covariance of the state:

𝑠𝑠′𝑡𝑡𝐴𝐴 = 𝑠𝑠𝑡𝑡𝐴𝐴 + 𝐾𝐾′(𝑧𝑧𝑡𝑡 − 𝐻𝐻𝑡𝑡𝑠𝑠𝑡𝑡𝐴𝐴) (21)
𝑃𝑃′𝑡𝑡 = 𝑃𝑃𝑡𝑡 − 𝐾𝐾′𝐻𝐻𝑡𝑡𝑃𝑃𝑡𝑡 (22)

In equation (21), the value of the vector 𝑧𝑧𝑡𝑡 is the sensor reading at time t, which in other words
is the observed state. The vector 𝑠𝑠𝑡𝑡𝐴𝐴 signifies the updated estimate of 𝑠𝑠𝑡𝑡𝐴𝐴 when considering the
sensor readings. The same principle applies to 𝑃𝑃′𝑡𝑡. The value of 𝐻𝐻𝑡𝑡𝑠𝑠𝑡𝑡𝐴𝐴 represents the expected
sensor readings given the estimated state 𝑠𝑠𝑡𝑡𝐴𝐴. Subtracting this product from the actual observed
sensor readings 𝑧𝑧𝑡𝑡 provides the difference between the predicted and observed states. The gain
function K' is applied to this difference (which can be considered as the error) and the error is
added to 𝑠𝑠𝑡𝑡𝐴𝐴 to yield 𝑠𝑠′𝑡𝑡𝐴𝐴, which is the updated estimate of 𝑠𝑠′𝑡𝑡𝐴𝐴. The general idea is also applied in
equation (22), but with regards to the covariances. Lastly, the updated estimates (𝑠𝑠′𝑡𝑡𝐴𝐴 and 𝑃𝑃′𝑡𝑡 as
opposed to 𝑠𝑠𝑡𝑡𝐴𝐴and 𝑃𝑃𝑡𝑡) are used as the values for equation (16) and equation (17) the next time the
KF is used. This portion of the predictive process helps to fine-tune the KF so the difference
between the predicted and observed states becomes smaller with time, which increases the
accuracy of the prediction model.

3.2.2.4 Pattern Learning Framework (PLF)

 Given the assumptions that the enemy makes decisions based only on its current state
(Markovian) and on the ally drone’s current state (purely reactive), the world state for the enemy
can be represented as:

 𝒔𝒔�⃗ = �𝑥𝑥𝑑𝑑𝑟𝑟𝑡𝑡𝑛𝑛𝑡𝑡 ,𝑦𝑦𝑑𝑑𝑟𝑟𝑡𝑡𝑛𝑛𝑡𝑡 , �̇�𝑥𝑑𝑑𝑟𝑟𝑡𝑡𝑛𝑛𝑡𝑡 , �̇�𝑦𝑑𝑑𝑟𝑟𝑡𝑡𝑛𝑛𝑡𝑡 , 𝑥𝑥𝑡𝑡𝑛𝑛𝑡𝑡𝑚𝑚𝑦𝑦 ,𝑦𝑦𝑡𝑡𝑛𝑛𝑡𝑡𝑚𝑚𝑦𝑦 , �̇�𝑥𝑡𝑡𝑛𝑛𝑡𝑡𝑚𝑚𝑦𝑦 , �̇�𝑦𝑡𝑡𝑛𝑛𝑡𝑡𝑚𝑚𝑦𝑦�
𝑇𝑇

where, for example, (𝑥𝑥𝑑𝑑𝑟𝑟𝑡𝑡𝑛𝑛𝑡𝑡,𝑦𝑦𝑑𝑑𝑟𝑟𝑡𝑡𝑛𝑛𝑡𝑡) and (�̇�𝑥𝑑𝑑𝑟𝑟𝑡𝑡𝑛𝑛𝑡𝑡 , �̇�𝑦𝑑𝑑𝑟𝑟𝑡𝑡𝑛𝑛𝑡𝑡) denote the position and velocity of the
drone (PLF agent) respectively. On the other hand, �𝑥𝑥𝑡𝑡𝑛𝑛𝑡𝑡𝑚𝑚𝑦𝑦,𝑦𝑦𝑡𝑡𝑛𝑛𝑡𝑡𝑚𝑚𝑦𝑦� and (�̇�𝑥𝑡𝑡𝑛𝑛𝑡𝑡𝑚𝑚𝑦𝑦, �̇�𝑦𝑡𝑡𝑛𝑛𝑡𝑡𝑚𝑚𝑦𝑦)
indicate the position and velocity of the enemy. Actions in this problem space are in the form of

Approved for Public Release; Distribution Unlimited.

23

𝑢𝑢�⃗ = [�̈�𝑥, �̈�𝑦]𝑇𝑇,which represents an acceleration vector (i.e. action vector in equation (16)) taken by
the enemy.

Given the earlier claims, the problem domain has a set of potential states 𝑆𝑆 ⊆ ℝ8,𝐴𝐴 ⊆ ℝ2
because the state vector 𝑠𝑠 has a dimensionality of 8 and the action vector 𝑢𝑢�⃗ has a dimensionality
of 2. The high dimensionality of the state space would make the learning process intractable. To
mitigate this issue, a feature transformation function 𝛷𝛷 was developed to simplify the state space
and make it possible to use for performing learning. This reduced state space is called the feature
space. We found that predicting a part of the state that is dependent on the drone’s actions gives a
better reward structure. This is in line with the work of Pathak et al. [18]. For the PLF, the feature
space includes two types of quantities. First, quantities that are state-space homogeneous, where
values in the state space are based on distance rather than absolute position. Second, quantities that
are measured relative to each other, such as the enemy’s velocity relative to the drone’s position.
Rather than raw state space vectors 𝑠𝑠, feature vectors 𝜙𝜙�⃗ with these characteristics generalize better
across situations with drastically different state space positions, but fundamentally describe similar
instances.

Determining the acceleration vector taken by the enemy at each time step is the core process of
the behavior identification problem during offline learning. Different acceleration vectors under
identical state conditions, or rather identical feature states, is what differentiates behavior types.
For instance, when the enemy maintains an acceleration vector 𝑢𝑢�⃗ = [0, 0] throughout, it is simply
traveling in a straight line with an unchanging velocity and its future state can then be optimally
predicted by using only the KF. The system becomes nonlinear given control inputs in the form of
acceleration vectors and to accurately predict the future state of the enemy, the KF must be
provided with the expected acceleration vector 𝑢𝑢�⃗ for the enemy. These vectors are generated using
the MDP and the reward functions learned from the offline learning module (Figure 8).

3.2.2.4.1 Offline Learning using IRL

The offline learning module aims to derive reward functions that describe the behavior of
enemies by following the same IRL approach implemented in Ng and Russel [14]. Obtaining an
approximation of the reward functions provides the likely actions that enemies with the same
behavior type will exhibit in online environments. The offline learning works in three steps: (1)
generating state-action pairs, (2) selecting the feature set, and (3) optimizing the selected features.

1) State-Action Pair Generation

The learning process requires a data set that provides the sequence of state-action pairs:

Log Data= {s⃗1
𝑢𝑢��⃗ 1→ 𝑠𝑠2

𝑢𝑢��⃗ 2→ 𝑠𝑠3. .
𝑢𝑢��⃗ 𝑛𝑛−1�⎯� 𝑠𝑠𝑁𝑁} (23)

However, logged data is often not contiguous from start to finish. In other words, the drone may
observe parts of an enemy’s trajectory, and may observe that enemy (or different enemies) at
different points in time with moments in between where no observation takes place. The log data
then becomes temporally discontinuous and fragmented. Furthermore, since the learning occurs
based on how the enemy behaves within the radius of observation, the learning algorithm cannot
make any assumptions about the enemy behavior once the enemy is outside that radius. The

Approved for Public Release; Distribution Unlimited.

24

learning is with respect to the reactive behavior of enemy agents rather than their global
unobserved behavior, which means inference between fragmented observation sections is
inadvisable. Therefore, rather than a complete trajectory from start to finish, a set of smaller
trajectories are used, splitting the logged data into multiple incomplete, but individually continuous
trajectories:

Log Data= �
�𝐬𝐬𝟏𝟏,𝟏𝟏

𝒖𝒖��⃗ 𝟏𝟏,𝟏𝟏�⎯� 𝒔𝒔�⃗ 𝟏𝟏,𝟐𝟐
𝒖𝒖��⃗ 𝟏𝟏,𝟐𝟐�⎯� 𝒔𝒔�⃗ 𝟏𝟏,𝟑𝟑 …

𝒖𝒖��⃗ 𝟏𝟏,𝒎𝒎−𝟏𝟏�⎯⎯⎯� 𝒔𝒔�⃗ 𝟏𝟏,𝒎𝒎� ,

��⃗�𝐬𝟐𝟐,𝟏𝟏
𝒖𝒖��⃗ 𝟐𝟐,𝟏𝟏�⎯� 𝒔𝒔�⃗ 𝟐𝟐,𝟐𝟐 …

𝒖𝒖��⃗ 𝟐𝟐,𝒏𝒏−𝟏𝟏�⎯⎯� 𝒔𝒔�⃗ 𝟐𝟐,𝒏𝒏� , … , �𝐬𝐬𝐤𝐤,𝟏𝟏
𝒖𝒖��⃗ 𝒌𝒌,𝟏𝟏�⎯� 𝒔𝒔�⃗ 𝒌𝒌,𝟐𝟐 …

𝒖𝒖��⃗ 𝒌𝒌,𝒍𝒍−𝟏𝟏�⎯⎯� 𝒔𝒔�⃗ 𝒌𝒌,𝒍𝒍�
� (24)

Note that the above strategy generalizes to a set containing one complete trajectory (akin to the
format in equation (23)), but equation (24) is shown as well for the sake of generality. The set of
these individually contiguous trajectories is the data the IRL algorithm uses to generate the reward
function for the behavior type that produced those trajectories. Offline learning occurs with the
assumption that all observed enemies are of a common type, which means every observed enemy
in the offline learning process is assumed to be exhibiting the same behavior model.

The logged data is the path the enemy has taken through the environment, a sequence of steps
where an action 𝑢𝑢���⃗ 𝑡𝑡 transforms state 𝑠𝑠𝑡𝑡 into 𝑠𝑠𝑡𝑡+1. That process of ‘stepping’ forward to the next
state takes the following form:

𝑠𝑠𝑡𝑡𝑢𝑢𝑝𝑝(𝑠𝑠𝑡𝑡,𝑢𝑢�⃗ 𝑡𝑡) → 𝑠𝑠𝑡𝑡+1
enemy (25)

The 𝑠𝑠𝑡𝑡+1 has an “enemy” superscript to denote that the step function only yields the enemy state
portion of 𝑠𝑠𝑡𝑡+1, because the drone state progression is independently determined by the drone’s
current planned trajectory. The action vector 𝑢𝑢�⃗ 𝑡𝑡 is not given, but rather inferred from the pair of
states that would surround the hypothetical action vector. This action vector is determined from
equation (25) and a null action 0�⃗ , which is an action vector composed entirely of 0:

𝑢𝑢�⃗ 𝑡𝑡 = 𝑠𝑠𝑡𝑡+1 − 𝑠𝑠𝑡𝑡𝑢𝑢𝑝𝑝�𝑠𝑠𝑡𝑡, 0�⃗ � (26)

The action vector is then asserted to be some function of the state residual between the observed
subsequent state 𝑠𝑠𝑡𝑡+1 and the subsequent state that would have occurred if no action was taken,
which is provided by 𝑠𝑠𝑡𝑡𝑢𝑢𝑝𝑝�𝑠𝑠𝑡𝑡, 0�⃗ �. The output of the 𝑠𝑠𝑡𝑡𝑢𝑢𝑝𝑝(𝑠𝑠𝑡𝑡,𝑢𝑢�⃗ 𝑡𝑡) function is described in more
detail in equation (32), but suffice to say that the function uses a KF with the action vector 𝑢𝑢�⃗ 𝑡𝑡 as
the control input.

2) Feature Selection

The selection of features is a critical problem that is highly domain-specific. It dictates the
structure and performance of the reward function, especially in high-dimensional state spaces with
ostensibly unrelated state variables. Selecting inappropriate features results in useless reward
functions, and reasonably chosen ones feed the learning algorithm with more domain-specific
knowledge.

In this project, we develop a feature transformation function that takes the form of
𝛷𝛷: 𝑆𝑆 × 𝐴𝐴 → 𝜙𝜙�⃗ , where 𝜙𝜙�⃗ is the vector of features, S is the set of states, and A is the set of actions.
The feature function requires a current state and the action that immediately followed, so calls to

Approved for Public Release; Distribution Unlimited.

25

the feature transformation function would appear as 𝛷𝛷(𝑠𝑠𝑡𝑡���⃗ ,𝑢𝑢𝑡𝑡���⃗), where 𝑠𝑠𝑡𝑡���⃗ is the state at time t and
𝑢𝑢𝑡𝑡���⃗ is the action taken at time t. For our problem domain, features were chosen with respect to the
assumption that the enemy behavior is Markovian and purely reactive. The features, therefore,
relate the velocity of the enemy with respect to itself and the current state of the drone. To
adequately compare these potentially unrelated values, a standardization technique was devised.
The feature standardization technique is illustrated in Figure 9. Figure 9.A shows an example of
the state space, where the enemy is traveling northeast, and the drone is traveling southwest, such
that the drone is approximately directly above the enemy.

Consider three vectors: one pointed in a direction parallel to the heading of the enemy (Figure
9.B, vector 𝑣𝑣0), one in a direction parallel to the allied drone (Figure 9.C, vector 𝑣𝑣0), and one
pointed toward the position of the allied drone from the position of the enemy (Figure 9.D,
vector 𝑣𝑣0). Each of these vectors is hereafter referred to as the 0-indexed vector 𝑣𝑣0 for their given
set of K vectors. The remainder of the vectors in each of the sets are indexed clockwise, where
𝑣𝑣𝑛𝑛 is 𝑛𝑛

𝑘𝑘
2𝜋𝜋 radians from the direction of the 𝑣𝑣0 vector of that set. Given the three previously defined

𝑣𝑣0 vectors, this results in a total of 3K vectors. Larger values of K correspond to more accuracy,
but lead to more computation during the reward function generation process and during the online
evaluation of behavior. The value K is set to 5 in the diagram to minimize clutter.

Figure 9: State space and feature space

The features are then computed as the similarity between the enemy velocity vector after
applying the action 𝑢𝑢𝑡𝑡���⃗ and each of the vectors within each set. Each individual feature ranges from
[0,1], where a value of 0 corresponds to the two vectors pointing in exact opposite directions. Each
of the vectors in each set are scaled to the maximum speed of the enemy.

Approved for Public Release; Distribution Unlimited.

26

3) Optimization

Once appropriate features have been selected, the offline learning problem becomes learning
the following vector:

�⃗�𝛼 = [𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼3𝐾𝐾]𝑇𝑇 (27)
This vector represents the weight attributed to each feature. Note that the size of the weight

vector �⃗�𝛼 is three times the value of K discussed in the previous Feature Selection section, to
represent the three sets of K vectors.

The reward function is a linear combination of the features, with coefficients for each of the
features dictated by the weight vector �⃗�𝛼 in equation (27). The reward function, therefore, takes
the following form:

𝑐𝑐𝑒𝑒𝑑𝑑��⃗�𝛼,𝜙𝜙�⃗ � = ∑ 𝛼𝛼𝑖𝑖𝜙𝜙𝑖𝑖3𝐾𝐾
𝑖𝑖=1 (28)

The optimization procedure above must be run for any given behavior type that could be
observed in the environment. Running this procedure for the various behavior types produces a set
𝛬𝛬 of �⃗�𝛼 vectors, each representing the reward function for the behavior type that was processed.
This set is used in the online observation to classify encountered enemies and determine the most
likely actions they will take.

3.2.2.4.2 Online Learning using IRL

The online learning module observes newly detected enemies and classifies their behaviors
based on the reward functions they maximize. The set of reward functions, Λ, generated by IRL,
is maximized by the MDP to assign the appropriate behavioral model to the enemy based on its
online observed states. Then, the KF is used to predict the future states of the enemy by processing
the action vector 𝑢𝑢�⃗ assigned by the MDP during the classification phase.

1) Representation of Behaviors
As mentioned above, the behaviors that are learned offline are stored in the set Λ. This set

contains different �⃗�𝛼 vectors for the different features’ weights. Using these vectors with the reward
function template defined in equation (28) allows for modeling different behaviors with distinct
reward functions. The action 𝑢𝑢�⃗ that a particular behavior type will execute given the current state
𝑠𝑠, is the action 𝑢𝑢�⃗ *that maximizes the reward function associated with that behavior type.

The subsequent state that the enemy is believed to proceed to is determined by the step function,
originally described in equation (25). The step function takes a state and an action then produces
the state that would result from applying the action in the given state. The function uses a KF to
predict how the state will be transformed with the provided control input. For our particular
domain, the KF employs the following prediction and control matrices:

Approved for Public Release; Distribution Unlimited.

27

𝐹𝐹𝛥𝛥𝑡𝑡 = �

1 0 ∆𝑡𝑡 0
0 1 0 𝛥𝛥𝑡𝑡
0 0 1 0
0 0 0 1

� (29)

𝐵𝐵𝛥𝛥𝑡𝑡 = �

(∆𝑡𝑡)2 2⁄ 0
0 (∆𝑡𝑡)2 2⁄
∆𝑡𝑡 0
0 ∆𝑡𝑡

� (30)

The KF is the main mechanism that dictates the return state of the step function. Given the
dynamics defined by the matrices in equations (29, 30), along with the KF predict step defined as
[17]:

 𝑠𝑠𝑡𝑡 = 𝐹𝐹𝑡𝑡𝑠𝑠𝑡𝑡−∆𝑡𝑡 + 𝐵𝐵𝑡𝑡𝑢𝑢�⃗ 𝑡𝑡 (31)

the step function then assumes the following form:
𝑠𝑠𝑡𝑡𝑢𝑢𝑝𝑝(𝑠𝑠𝑡𝑡,𝑢𝑢�⃗ 𝑡𝑡) = 𝐹𝐹𝛥𝛥𝑡𝑡𝑠𝑠𝑡𝑡

enemy + 𝐵𝐵𝛥𝛥𝑡𝑡𝑢𝑢�⃗ 𝑡𝑡 (32)

While the step method is a mechanism for progressing the MDP that represents the enemy state
one time-step forward, it also acts as a tool for simulating the motion dynamics of the environment
through the KF.

Note that the KF expects a state vector with a dimensionality of four because it is used only for
predicting the enemy state. Since the drone already has a previously articulated and known plan,
the KF does not need to predict its future state. The world state for an observed enemy is
represented as the union of two state vectors: the observing drone’s state and the observed enemy’s
state. Determining how this vector changes in the future is done based on the drone’s plan along
with the forecast of the enemy’s state, which in turn is based on the anticipated state of the drone
in the preceding time step. This becomes a pure prediction problem once the enemy has been
classified with a behavior type.

Figure 10: Behavior classification process

𝒔𝒔�⃗ 𝒕𝒕−𝟏𝟏drone

𝛬𝛬 𝒔𝒔�⃗ 𝒕𝒕−𝟏𝟏
enemy

𝜶𝜶��⃗

Approved for Public Release; Distribution Unlimited.

28

2) Classification of Newly Discovered Enemy

Before any prediction can be determined, a behavioral model must first be assigned to that
enemy. This process involves extracting the actions an enemy has executed under the given state
conditions. A similar procedure described in equation (26) is employed for this purpose. Given
that 𝑠𝑠𝑡𝑡 is the currently observed state and the enemy was observed the timestep before, 𝑢𝑢�⃗ 𝑡𝑡−1 = 𝑠𝑠𝑡𝑡 −

𝑠𝑠𝑡𝑡𝑢𝑢𝑝𝑝�𝑠𝑠𝑡𝑡−1, 0�⃗ � is used to find the residual between the 𝑠𝑠𝑡𝑡 that was observed and the hypothetical 𝑠𝑠𝑡𝑡 that
would have occurred if an action vector 0�⃗ was applied. This action 𝑢𝑢�⃗ 𝑡𝑡−1 along with the preceding
state 𝑠𝑠𝑡𝑡−1 are used as arguments for each of the behavior types stored in the set Λ, and whichever
reward function is maximized under the exhibited state-action pair is the most likely behavior the
enemy is exhibiting (Figure 10).

Although the above procedure is described in the context of discovering a not previously
encountered enemy in the environment, the same process applies when the enemy changed its
currently assigned behavior type. In this case, a different �⃗�𝛼 should result in a larger reward for an
observed action and the assigned behavioral model would shift to the new type. This procedure is
formalized in Algorithm 3 below:

Algorithm 3: assign_behavior (𝛬𝛬, 𝒔𝒔�⃗ 𝒕𝒕−𝟏𝟏, 𝒔𝒔�⃗ 𝒕𝒕)
1- 𝒔𝒔�⃗ 𝒕𝒕null = 𝒔𝒔𝒕𝒕𝒔𝒔𝒔𝒔�𝒔𝒔�⃗ 𝒕𝒕−𝟏𝟏,𝟎𝟎��⃗ �
2- 𝒖𝒖��⃗ 𝒕𝒕−𝟏𝟏 = 𝒔𝒔�⃗ 𝒕𝒕null − 𝒔𝒔�⃗ 𝒕𝒕 (26)
3- 𝑐𝑐𝑒𝑒𝑑𝑑𝑚𝑚𝑎𝑎𝑚𝑚 = 0,𝜶𝜶��⃗ 𝒎𝒎𝒎𝒎𝒎𝒎 = 𝟎𝟎��⃗
4- 𝒇𝒇𝒇𝒇𝒇𝒇 𝜶𝜶��⃗ 𝒊𝒊 ∈ 𝛬𝛬:
5- 𝑐𝑐𝑒𝑒𝑑𝑑𝑖𝑖 = 𝑐𝑐𝑒𝑒𝑑𝑑�𝜶𝜶��⃗ 𝒊𝒊,𝜱𝜱(𝒔𝒔�⃗ 𝒕𝒕−𝟏𝟏,𝒖𝒖��⃗ 𝒕𝒕−𝟏𝟏)� (28)
6- if 𝑐𝑐𝑒𝑒𝑑𝑑𝑖𝑖 > 𝑐𝑐𝑒𝑒𝑑𝑑𝑚𝑚𝑎𝑎𝑚𝑚:
7- 𝑐𝑐𝑒𝑒𝑑𝑑𝑚𝑚𝑎𝑎𝑚𝑚 = 𝑐𝑐𝑒𝑒𝑑𝑑𝑖𝑖 ,𝜶𝜶��⃗ 𝒎𝒎𝒎𝒎𝒎𝒎 = 𝜶𝜶��⃗ 𝒊𝒊
8- 𝒇𝒇𝒔𝒔𝒕𝒕𝒖𝒖𝒇𝒇𝒏𝒏 𝜶𝜶��⃗ 𝒊𝒊

3) Prediction of Enemy with Classified Behavior

Predicting the enemy’s behavior once a behavioral model has been applied becomes a task of
successive step calls. The process uses the current world state and builds a new future state by
iteratively producing the sequence of states that could occur. The hypothetical sequence of states
is contingent on the enemy’s assigned behavioral model and the drone’s current plan.

For example, suppose we want to predict the world state at 𝑠𝑠𝑡𝑡+1. The drone’s portion of this
state is assumed to be predetermined from its plan. On the other hand, the enemy’s portion of the
state is dictated by the action 𝑢𝑢�⃗ 𝑡𝑡 that is derived from its designated behavior type and the world
state 𝑠𝑠𝑡𝑡 immediately preceding that action (Figure 11).

Approved for Public Release; Distribution Unlimited.

29

Figure 11: Prediction process for enemy behavior

The principle generalizes to determining the state at t+i. If only the enemy state at time t+i is
needed, the drone’s plan needs to only be known up to the time step t+i-1. Otherwise, if the whole
estimate for the world state 𝑠𝑠𝑡𝑡+𝑖𝑖 is desired, the drone’s plan must extend one more step to t+i. The
algorithm for this procedure is formalized in Algorithm 4, where i is the number of time steps
ahead to forecast, �⃗�𝛼 is the current behavioral model, 𝑠𝑠𝑡𝑡

enemy is the currently observed enemy state,
and the sequence of planned drone’s states Β, whose first element is the current drone state at time
t.

Algorithm 4: 𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐬𝐬𝐟𝐟�𝑖𝑖,𝜶𝜶��⃗ , 𝒔𝒔�⃗ 𝒕𝒕
enemy,𝛣𝛣�

1- 𝒄𝒄𝒖𝒖𝒇𝒇𝒇𝒇����������⃗ = 𝒔𝒔�⃗ 𝒕𝒕
𝒔𝒔𝒏𝒏𝒔𝒔𝒎𝒎𝒆𝒆 ∪ 𝛣𝛣𝑡𝑡

2- 𝒇𝒇𝒇𝒇𝒇𝒇 𝑗𝑗 from 𝑡𝑡 + 1 to 𝑡𝑡 + 𝑖𝑖:
3- 𝒖𝒖��⃗ 𝒋𝒋* = 𝑎𝑎𝑐𝑐𝑔𝑔 𝑠𝑠𝑎𝑎𝑥𝑥

𝒖𝒖��⃗
�𝑐𝑐𝑒𝑒𝑑𝑑�𝜶𝜶��⃗ ,𝜱𝜱(𝒄𝒄𝒖𝒖𝒇𝒇𝒇𝒇����������⃗ ,𝒖𝒖��⃗)��

4- 𝒄𝒄𝒖𝒖𝒇𝒇𝒇𝒇����������⃗ = 𝒔𝒔𝒕𝒕𝒔𝒔𝒔𝒔�𝒄𝒄𝒖𝒖𝒇𝒇𝒇𝒇����������⃗ enemy,𝒖𝒖��⃗ 𝒋𝒋*� ∪ 𝛣𝛣𝑗𝑗
5- 𝒇𝒇𝒔𝒔𝒕𝒕𝒖𝒖𝒇𝒇𝒏𝒏 𝒄𝒄𝒖𝒖𝒇𝒇𝒇𝒇�����������⃗

3.2.2.4.3 Predictive-RA*

In order to plan for robust paths in hostile environments, the dynamics of the adversaries need
to be embedded within the path planning algorithm. To increase the robustness of the drone’s path,
the predicted states of the enemy must be considered in the robustness computation. Any prediction
model cannot be precise enough to give one exact position for the enemy, but instead it answers
the question of how likely the enemy is going to be in a specific area in the world state. Hence, we
extend the MTL specification of our drone in equation 3 to include the following predicate:

Approved for Public Release; Distribution Unlimited.

30

□[0,deadline] �⋀ P�inside� •t|0 WR� < α� v
t=0 � (33)

The interpretation of this predicate is that during the mission time, the probability of the drone
being inside the predicted 𝑊𝑊𝑊𝑊 of the enemy set must be less than a threshold of 𝛼𝛼 within the next
v time. The threshold can be scaled according to the problem domain and the importance of the
drone safety. The finite horizon v is imposed to restrict the robustness monitoring up to the limited
vision range of the drone since resolution for potential violation in the far future is likely to only
waste computation resource and time. However, this predicate returns a Boolean value while the
robustness of equation (14) returns a numerical value. In order to resolve this conflict, we simply
compute the robustness of equation 33 as follows:

P�inside� •t|0 WR� < α� ⇒ �1 − P �inside� •t|0 WR��� × PR

P�inside� •t|0 WR� ≥ α� ⇒ −∞ (34)

where PR is the preferred robustness value. Equation 34 indicates that the position with a
probability less than 𝛼𝛼 is considered robust and its robustness value depends on its probability of
being outside the 𝑊𝑊𝑊𝑊 multiplied by the preferred robustness value (i.e. weight). On the other hand,
the robustness of the position with the risk probability higher than 𝛼𝛼 is set to be negative infinity
to exclude these positions from the search space for Predictive-RA*.

The drone specification in equation 3 becomes:

φ = ◊[0,deadline] q ∧ □[0,deadline] (¬WR) ∧ □[0,deadline] �⋀ P�inside� •t|0 WR� < α� v
t=0 � (35)

The probability of the drone being inside the WR cannot be computed directly from the Gaussian
distribution given by KF. The distance between the drone’s path points and the distribution of the
enemy state must be considered. To compute that, we generate a new non-central 𝜒𝜒2 distribution
[18] using the Gaussian distribution of the enemy state.

Let (x,y) be the drone’s known position and the enemy position (𝜇𝜇𝑚𝑚𝑒𝑒 , 𝜇𝜇𝑦𝑦𝑒𝑒) is the assumed
position by a Gaussian distribution as ~𝒩𝒩(𝜇𝜇,𝜎𝜎) from KF. The distance between the drone and the
enemy is computed as:

r2 = �x − µxe�
2

+ �y − µye�
2 (36)

We can compute the non-centrality parameter of the non-central 𝜒𝜒2 distribution as follows:

λ = r (37)

Then, the probability density function for the 𝜒𝜒2 with 𝑘𝑘=2 degrees of freedom is given by:

f(r, k) = 1
2

(e−r) Ιk 2−1⁄ (r) (38)

Approved for Public Release; Distribution Unlimited.

31

where 𝛪𝛪𝑘𝑘(𝑐𝑐) is the modified Bessel function of the first kind of order with 𝑘𝑘 degrees of freedom.
The cumulative distribution function (cdf) can be used to find the likelihood that the distance
between the drone and the enemy set is less than the WR (i.e. the drone is inside WR):

P(inside(WR)) = ∫ f(r, k) drWR
0 (39)

The Predictive-RA* algorithm is shown in Algorithm 1. It is built on A*, but with essential
modifications. First, the MTL robustness computation of the safety property (line 8 in neighbors
function) is included within the cost function g to favor robust trajectories. The positions that are
expected to be inside the WR with probability higher than 𝛼𝛼 would be excluded from the search
space (line 6), preventing the drone from taking paths through them. Positions with less risk are
considered passable. Their robustness degree depends on how far they are expected to be from the
WR in equation 34. In other words, trajectories with larger distances away from the enemy set are
dominated in Predictive-RA*. Subtracting the expected robustness from the g function in line 9
creates uphill terrains around the locations where the enemy is high likely to be there in the near
future. On the other hand, locations far away from these areas are dealt with as downhill terrains
to encourage the drone to pass through them. However, the robustness degree is constrained by
the resource limitations (line 6). Thus, the trajectory robustness is maximized based on the
available fuel and time for the drone to accomplish its mission (conditions in equations 13-2,13-
3). The last modification is using KF in equations 1,2,8 and 9 to predict the states of the enemy set
in the world space over the planning time (lines 12 and13 of Predictive-RA* and lines 3 and 5 in
neighbor function).

RA* considers the visual range (VR) of the enemies as risky as their weapon range. However,
by forcing the drone to avoid being seen by enemies, RA* increases the resource consumption.
Moreover, RA* works properly under the assumption that the drone’s VR is always larger than
the maximum VR of the enemy set. Realistically, the drone cannot avoid being seen in
environments with capable enemies. In order to bridge this gap, the trajectory monitor evaluates
the robustness of the MTL safety property in equation 16 only when the drone becomes inside VR
of one or more enemies. In other words, the decision of re-planning a new robust path for the drone
depends on the answer to the question of “whenever the probability of the drone passing inside the
VR of the enemy set within the next v time is at least 𝛽𝛽, is the current trajectory still robust?” This
question can be written as an MTL constraint:

��P �inside� •t|0 VR�� ≥ β
v

t=0

� ⟹

□ P�inside� •t|0 WR� < α� (40)

Algorithm 5 Predictive-RA*
Function Predictive_RA*(𝑠𝑠0,q)
1- closed = ∅

Approved for Public Release; Distribution Unlimited.

32

2- 𝑠𝑠0.g= ¬𝑊𝑊𝑊𝑊�p0, E0�
3- 𝑠𝑠0.h= Euclidean(𝑠𝑠0, q)
4- 𝑠𝑠0.f = s.g+s.h
5- open.insert(𝑠𝑠0)
6- while open ≠ ∅
7- current = pop(open_queue)
8- if current = q
9- return construct_path(q)
10- open.remove(current)
11- closed.insert(current)
12 𝑥𝑥′𝑡𝑡 = ⋃ 𝑥𝑥′𝑖𝑖,𝑡𝑡𝑛𝑛

𝑖𝑖=0 ∀ 𝑢𝑢𝑖𝑖 ∈ 𝐸𝐸 (21)
13- 𝑃𝑃′𝑡𝑡 = ⋃ P′

𝑖𝑖,𝑡𝑡
𝑛𝑛
𝑖𝑖=0 ∀ 𝑢𝑢𝑖𝑖 ∈ 𝐸𝐸 (22)

14- for neighbor ∈ neighbors(current,X, �̂�𝑥′𝑡𝑡,𝑃𝑃′𝑡𝑡)
15- if neighbor ∉ closed
16- if neighbor ∉ open
17- open.insert(neighbor)
18- else
19- openneighbor = neighbor ∈ open
20- if neighbor.g > openneighbor.g
21- open.remove(openneighbor)
22- open.insert(neighbor)
23- return false // no path exists
Function neighbors(p,Xi, �̂�𝑥′𝑡𝑡,𝑃𝑃′𝑡𝑡)
1- neighbors = neighbors_of(p,1)
2- for n ∈ neighbors
3- 𝑥𝑥𝑡𝑡+∆t|𝑡𝑡 = ⋃ 𝑥𝑥𝑖𝑖,𝑡𝑡+∆t|𝑡𝑡𝑛𝑛

𝑖𝑖=0 ∀ 𝑢𝑢𝑖𝑖 ∈ 𝐸𝐸 (16)
4- 𝑃𝑃𝑡𝑡+∆t|𝑡𝑡 = ⋃ 𝑃𝑃𝑖𝑖,𝑡𝑡+∆t|𝑡𝑡𝑛𝑛

𝑖𝑖=0 ∀ 𝑢𝑢𝑖𝑖 ∈ 𝐸𝐸 (17)
5- if P�𝑖𝑖𝑛𝑛𝑠𝑠𝑖𝑖𝑑𝑑𝑢𝑢� •𝑡𝑡|0 𝑊𝑊𝑊𝑊� < 𝛼𝛼� (33)
6- if(fuel-fuel_to_n>0 & deadline-time_to_n>0)
7- n.r=�1 − P�𝑖𝑖𝑛𝑛𝑠𝑠𝑖𝑖𝑑𝑑𝑢𝑢(𝑊𝑊𝑊𝑊𝑛𝑛)�� × 𝑃𝑃𝑊𝑊
8- n.g = d(n,p)- n.r
9- n.h= Euclidean(neighbor,q)
10- n.f = n.g + n.h
11- n.parent = p
12- return neighbors

The developed monitoring algorithm is shown in Algorithm 6. The loop moves the drone on the
path and monitors robustness simultaneously. The drone’s sensor data (line 2) is used to update
the KF’s predicted values (lines 3 and 4) whenever it sees the enemies. Line 5 checks whether the
current path is expected to lead the drone into the VR of the enemy in equation 21. When the
probability of this action is above a certain threshold 𝛽𝛽, a robustness evaluation of the mission
constraint is conducted in the violate_robustness function (line 6 of the loop). The robustness is
computed using the drones’ path points, the state predictions, and the safety property (equation
34). Once a violation is anticipated (line 4 in violate_robustness), Predictive-RA* is executed
again, generating a new robust path considering all enemies that can be seen and predicted (line
10 of the loop).

Algorithm 6 Trajectory Monitoring
function loop()
1- 𝜌𝜌: current path
2- 𝑧𝑧𝑡𝑡= sensor_data
3- 𝑥𝑥′𝑡𝑡 = ⋃ 𝑥𝑥′𝑖𝑖,𝑡𝑡𝑛𝑛

𝑖𝑖=0 ∀ 𝑢𝑢𝑖𝑖 ∈ 𝐸𝐸 (21)
4- 𝑃𝑃′𝑡𝑡 = ⋃ P′

𝑖𝑖,𝑡𝑡
𝑛𝑛
𝑖𝑖=0 ∀ 𝑢𝑢𝑖𝑖 ∈ 𝐸𝐸 (22)

5- if(⋀ 𝑃𝑃 �𝑖𝑖𝑛𝑛𝑠𝑠𝑖𝑖𝑑𝑑𝑢𝑢� •𝑡𝑡|0 𝑉𝑉𝑊𝑊�� ≥ 𝛽𝛽𝑣𝑣
𝑡𝑡=0) (40)

6- if violate_robustness(𝜌𝜌, 𝑥𝑥′𝑡𝑡, 𝑃𝑃′𝑡𝑡)
7- 𝜌𝜌 ←re-plan by Predictive-RA*
8- drone.move(𝜌𝜌)

Approved for Public Release; Distribution Unlimited.

33

function violate_robustness(𝜌𝜌, 𝑥𝑥′𝑡𝑡, 𝑃𝑃′𝑡𝑡)
1- for 𝑝𝑝𝑙𝑙𝑠𝑠𝑖𝑖 ∈ 𝜌𝜌
2 𝑥𝑥𝑡𝑡+∆t|𝑡𝑡 = ⋃ 𝑥𝑥𝑖𝑖,𝑡𝑡+∆t|𝑡𝑡𝑛𝑛

𝑖𝑖=0 ∀ 𝑢𝑢𝑖𝑖 ∈ 𝐸𝐸 (1)
3- 𝑃𝑃𝑡𝑡+∆t|𝑡𝑡 = ⋃ 𝑃𝑃𝑖𝑖,𝑡𝑡+∆t|𝑡𝑡𝑛𝑛

𝑖𝑖=0 ∀ 𝑢𝑢𝑖𝑖 ∈ 𝐸𝐸 (2)
4- if (⋀ P�𝑖𝑖𝑛𝑛𝑠𝑠𝑖𝑖𝑑𝑑𝑢𝑢� •𝑡𝑡|0 𝑊𝑊𝑊𝑊� ≥ 𝛼𝛼�)𝑣𝑣

𝑡𝑡=0 (40)
5- return true
6- return false

3.2.2.5 Evaluation
The testing environment is a continuous two-dimensional map with various enemies, and a

randomly navigating drone. The experiment aims to test the classification accuracy and the
predictive ability of the method when different amounts of data are used to learn. For testing the
algorithm, three different behavior types were specified for the described problem domain: a
chasing behavior, an interception behavior, and an orbiting behavior. Agents exhibiting the chase
behavior always travel directly to the drone. The interception behavior accounts for the current
heading of the drone and attempts to move towards an intercept point a certain distance ahead of
the drone. The orbiting behavior simply circles around a particular point, “guarding” a certain
region.

We tested our agents using RASSim ATE3, which is a simulator produced by the Air Force
Research Lab to simulate ally and adversarial drones. Data for offline learning was produced
running three separate simulations where the drone wandered in an environment populated by
enemies with a single behavior type. Each simulation was run long enough to accrue a large
number of sample trajectories observing how each behavior type makes decisions under various
different state conditions. For the online portion of testing the drone was again tasked with
randomly wandering different environments, but rather than simply observing, the drone used the
set of learned behavior models Λ to avoid the enemies.

To evaluate the strength of the learning process, each trial was run on different amounts of
learned data – in other words, identical world conditions (trials) were run multiple times, but each
time a subset of the learned data from the offline portion was used. For our experimentation, we
used 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 100, 200, 300, 400, 500, and 1000 data points for
each trial, where a data point is a state-action pair. A trial is a random arrangement and behavioral
assignment of enemies. Furthermore, we ran an identical process where the behavior types were
entirely homogenous throughout the environment, to evaluate the improvement in classification
accuracy for each behavior type individually.

The test results indicate that the algorithm successfully predicts and classifies given more input
data, and performs reasonably well, even with small amounts of training data. However, a
discrepancy emerges due to the similarity between the ‘chase’ and ‘intercept’ behaviors. The chase
and intercept behaviors become nearly indistinguishable once the enemy is behind the drone agent
and the two are moving in the same heading (a situation that becomes inevitable with both
behaviors when the drone is faster). This situation results in the algorithm placing similar weights
for both chase and intercept, which increases the amount of misclassification for these behavior
types.

Approved for Public Release; Distribution Unlimited.

34

The data shows in Figure 12 a decrease in the prediction error; the distance between the
predicted location of the enemy 10 seconds after observation and its actual location. Moreover, the
data in Figure 13 shows an increase in the classification accuracy; the percentage of observed
enemies correctly classified with one of the three behavior types; when more input data was used
to generate the reward functions. Intercept behavior seems to suffer from the above dilemma the
most with respect to the classification accuracy, although all behavior types improve their
predictive qualities with more training data. Furthermore, the prediction results are also affected
by the misclassification, because often a misclassification can result in an erroneous prediction
when forecasting further in advance.

Figure 12: The distance between the predicted location of the enemy and its actual location

Figure 13: The percentage of correctly classified enemies

3.2.3 Coordination Module

Our approach is composed of three components: Quad-Tree decomposition, task allocation, and
multi-layered coordination. The Quad-Tree is used to model the environment such that each
quadrant in the tree has an a priori probability, provided through reconnaissance, that the
corresponding area has one or more pieces of intel. By restricting the underlying representation of
the problem to a Quad-Tree, large areas can be explored quickly using limited resources [19,20].
However, this approach is not restricted to Quad-Trees. The only requirement is that the underlying

Approved for Public Release; Distribution Unlimited.

35

representation of the environment must be decomposed into identifiable areas that can be used to
model an a priori probability distribution of the intel locations. Therefore, our approach can be
applied to alternative representations like topological, coverage, or occupancy maps.

Task allocation is performed using a utility-based algorithm centrally at the Home Base (HB).
The centralized allocation occurs before the mission starts and with full knowledge of the drones
and their capabilities, but with uncertain information about the environment. The decision
concerning task allocations for the drones is modeled by the maximization of a utility function.
The utility function considers the applicability of the sensor carried by the drone to acquire the
Intel, the potential fuel consumption, and the time required to reach the intel. A max-flow
algorithm is implemented on a K-Partite graph that maximizes the utility during task allocation.

For the task coordination, we design a three-layered coordination approach including: Class
Hierarchy, Message Passing, and Runner & CLI. The first layer covers the Class Hierarchy that
is used to separate the many tasks that a single drone has to service. The second layer covers the
message passing protocol that drones use to communicate with each other and with the HB. The
caveat to the message passing protocol is that – much like network protocols – there are many
different layers of message passing – one for each class in Class Hierarchy. The Runner is the class
responsible for executing each trial run and communicating with the Docker instance while the
Command Line Interface (CLI) is used to configure the input arguments to the Runner such as
which scenario will be the subject of the current run.

3.2.3.1 Layer1: Class Hierarchy

The Asset is responsible for managing the mutable fields of an ATE3 Asset such a fuel, motion,
etc. Each Asset that is received from the ATE3 Docker instance is first converted to an immutable
AssetProto, which is then passed to an instance of Asset. The AssetProto stores the immutable
fields of the Asset such as the max fuel capacity, the max speed, etc. By doing so, the Asset instance
can manage the mutable fields of the Asset while also ensuring that the immutable fields never
violate the constraints of the Asset – e.g. an asset having more fuel than their max fuel capacity.
In order to handle mutating the mutable fields, the Asset implements an update loop that takes an
ATE3 AssetState. It then updates its own mutable state to deeply match that of the AssetState.
This addresses our first requirement – syncing our local asset states with the Docker AssetStates.

Approved for Public Release; Distribution Unlimited.

36

Figure 14: The class hierarchy for task coordination

 Each non-abstract subclass in the class hierarchy overrides the update method while also calling
the super instance of the method so that all levels of the hierarchy are able to update. This allows
one level of the hierarchy to manage updating the local asset fields while another level of the
hierarchy can manage checking for enemies within vision range.

The second class in the hierarchy is the Remote. A Remote is an Asset with an output loop that
takes a builder instance of the ATE3 AgentIntent and updates the builder to include its own Intent.
This loop is an abstract method. Each subclass will override this method while also calling the
super instance of the method so that each class of the hierarchy will be able to configure the intent.
This is done so that one class of the hierarchy can be responsible for the message intents, another
class can be responsible for the event intents, while another class can be responsible for the move
intent.

The next class in the hierarchy is the Agent class that serves as the root class for all of the
implemented Agent types. The Agent class adds a Time requirement to the hierarchy as well.
Agents exist to operate in the environment and execute a mission, so they must have a mission
deadline. This is done by passing the Agent a TimeProto, which is then converted to a mutable
Time instance for tracking how much Time the Agent has remaining in its mission.

Extending from the Agent class is the CommAgent class. This class is responsible for handling
communications. In each update cycle, this class fetches messages from the inbox, parses those
messages, and triggers a message incoming event, which can be hooked into by classes that are

Approved for Public Release; Distribution Unlimited.

37

lower on the hierarchy. This class also introduces a set of methods to manage a message queue
that can also be employed by classes that are lower in the hierarchy. Then, during every loop, the
CommAgent flushes all of the messages that have been queued to the Intent builder so that the
messages can be passed on to their intended recipients.

The EventAgent is responsible for handling all of the events that are generated during execution
such as New Intel, New Jammer, New AA, etc. These events need to be logged and sent to the
Docker so that they can be recorded for the performance metrics tool that has been provided. In
addition to logging events, the EventAgent also handles communicating events to other drones and
to HB, and it handles logging events that are received as messages from other EventAgents.

There are two types of distinct EventAgents. The first is the ISRDroneAgent, which is
responsible for the ISRDrone remote, and the second is the HomebaseAgent, which is responsible
for the HB remote. The ISRDrones need additional functionality that the HB does not require such
as exploring the environment and collecting intel. HB is responsible for updating the Docker for
the performance metrics purposes.

The ISRDrone has its own hierarchy starting with the PathAgent. This agent is responsible for
constructing and maintaining the physical path that the agent is to fly. Each path is represented as
both an array of 2D Euclidean points that outline the physical path and as an array of 2D vectors
that detail the trajectory of the path in terms of velocity. This is done so that the agent has a
representation of the path that is adequate to send the Docker as a series of move intents. This
agent is built using Predictive-RA*, which was explained in the previous section. Lastly, the
PathAgent also exposes a series of hooks that relate to when conditions of the path-planner are
violated. These conditions include when a new adversary enters visual range, when the PathAgent
enters the visual range of an adversary, and when the PathAgent enters the weapon range of an
adversary. These conditions trigger what is commonly referred to as replanning, and each of these
generates a different replanning event that can be hooked into by classes that are implemented at
lower levels of the hierarchy.

Extending from PathAgent is the ExploreAgent. The ExploreAgent is responsible for exploring
the environment to locate more intel targets and learning more about the environment. Since every
ally drone has the same visual range, the environment is represented using a Quad-tree. The Quad-
tree is constructed from the root down so the root quad has the same dimensions as the
environment. The construction ends when the dimensions of the leaf quads are no greater than two
times the visual range of the ally drones. This construction was chosen because it implies that the
location of a quad (its center point) is sufficient for observing the entire quad. To explore the entire
environment, the ally drones need only visit every quad location. This approach also effectively
maps the environment to a 2D Euclidean grid, which is easier to reason about. The leaf quads are
then mapped to a set of explore tasks – one for each leaf quad. To explore the environment, the
ExploreAgents must collaborate over the available tasks. This is done by first implementing a
ranking system that the drones share. This ranking system determines which drone outranks other
drones. Thus, if two drones attempt to take the same task, then the drone that is lower in the ranking
order will abort the task and take another.

In limited communication cases, it is likely that more drones will attempt to explore the same
quad unless the drones with lower ranks are informed en route to abort. To acquire an explore task,

Approved for Public Release; Distribution Unlimited.

38

an ExploreAgent chooses the closest explore task that is also available. An explore task is available
if it is both unclaimed and incomplete. After claiming an explore task, the ExploreAgent
immediately informs all other ExploreAgents and HB that it has claimed the task. The
ExploreAgent is also responsible for sending other updates on its task, which will be explained
more in the second layer of the approach.

The TaskAgent is very similar to the ExploreAgent except that it handles intel collection tasks
and support tasks rather than exploration tasks. If any intel is known in advance, those intel are
mapped to collection tasks. The TaskAgents then use the same ranking order that they would use
to mitigate conflicts when exploring to mitigate conflicts when claiming collection tasks. Similar
to the ExploreAgent, each TaskAgent claims the closest collection task that is also available.
Available is defined as being unclaimed, incomplete, and having the same sensor type requirement
as the drone that is attempting to collect it. Each TaskAgent handles reporting all updates about its
collection task, which will be explained further in layer 2. In addition to collection tasks,
TaskAgent can also attempt support tasks. Support tasks are generated when a drone is having
difficulty collecting an intel. Difficulty is defined as being intercepted by an adversary while
attempting to collect an intel. When a TaskAgent attempts to support, it will attempt to collect the
intel task of the drone that it is supporting. In this way, each drone and its supporters are all
collaborating to collect the same intel. If a TaskAgent has no collection tasks and no support tasks,
then it behaves the same as an ExploreAgent.

The last agent implementation in the hierarchy is the TUAgent. The TUAgent is responsible for
handling the state logic that directs the drone how to behave. The TUAgent has 11 states that it
manages as a finite-state-machine FSM (Figure 15). These states are: DEAD, INACTIVE,
STANDBY, EXPLORE, ACTIVE, INTERCEPT, HOMEBOUND, INVESTIGATE,
PERSISTENT, DURESS, and JAMMED. The DEAD state indicates the drone has been killed
either by being shot down by an adversary or by crashing after running out of fuel. The second
state is INACTIVE which indicates the drone is alive, but is running out of time, fuel, or both.
While operating in the environment, each drone will continuously check if it has enough time and
fuel to return home. If it discerns that it only has enough time or fuel to return home, then it will
do so and enter into the INACTIVE state. A drone that is INACTIVE aborts all of its tasks, returns
home, and takes no other tasks for the remainder of the mission.

Approved for Public Release; Distribution Unlimited.

39

Figure 15: Finite-state machine for states of TUAgent

In STANDBY, a drone waits at HB until a new task becomes available. This state is rarely
entered into because it requires there to be no tasks left available. This only occurs when the entire
environment has been explored and when all of the intel have been collected. As such, when all of
the drones are either DEAD, INACTIVE, or on STANDBY, the mission can be terminated. The
next state is the EXPLORE state. A drone is in the EXPLORE state if there are no collection tasks
or support tasks available, but there are explore tasks that are available. While in the EXPLORE
state, a drone is actively claiming explore tasks, completing explore tasks, and reporting completed
explore tasks. However, if there are any collection tasks or support tasks, then the drone will exit
the EXPLORE state and enter the ACTIVE state. While in the ACTIVE state, a drone is actively
executing a path planning towards its intended intel objective and replanning to avoid adversaries
along the way. If the drone can successfully reach its intel objective and begins collecting intel,
then it enters the INTERCEPT state. Once in the INTERCEPT state, a drone hovers until it has
collected the target intel. After collecting the target intel, the drone can transition to the ACTIVE
state if there are more intel to collect, the EXPLORE state if there are no intel to collect, but there
are explore tasks to explore, or the drone can enter the HOMEBOUND state. A drone enters the
HOMEBOUND state when it is returning home and has no explore tasks, collection tasks, or
support tasks to claim. Once the drone reaches HB, it transitions to the STANDBY state.

The other three states are special states that occur when a drone is either seen or threatened by
an adversary. The INVESTIGATE state occurs when a drone has been seen, but is not being
chased. In this state, the drone will attempt to reach its intel objective while also avoiding the
weapon range of nearby adversaries. As a secondary objective, it will also attempt to escape the
visual range of all nearby adversaries, but not at the cost of losing intel. This is done because not
all adversaries are a direct threat. For example, adversaries that don’t chase, those without
weapons, and those that cannot move are non-threatening. As an additional component of the
INVESTIGATE state, the drone is attempting to determine if it needs support. A drone that
transitions to the INVESTIGATE state doesn’t immediately call for support. Instead, it first
attempts to collect the intel, and if it is chased or intercepted in the process, it then calls for support.
The reason for this delay is due to the last component of the INVESTIGATE state. The drone is

Approved for Public Release; Distribution Unlimited.

40

investigating how many adversaries are guarding its intel objective. This informs the drone how
many other drones it should request to support. In general, the number of adversaries that are
spotted during investigation are the number of additional drones that can support the intel
collection task. However, a drone must have the same sensor type as the intel objective. This type
is not always known, but it can be communicated about. A drone that is investigating will not
include static adversaries when reporting how much support it needs. Also, if the drone determines
that there is no way to collect an intel objective because of a static adversary, it will cease
attempting to collect that intel and will broadcast a global cancel so that no other drone attempts
to collect that intel either.

While attempting to INVESTIGATE, a drone can be chased or intercepted. This occurs when
an adversary is actively trying to intercept our drone or when the drone has already reached weapon
range of an adversary. In either of these cases, the drone transitions to the PERSISTENT state. In
the PERSISTENT state, the drone switches its priorities so that its primary priority is to avoid
nearby adversaries and its secondary priority is to collect its intel. This is done so that the drone
will be allowed to flee the intel objective for its safety before trying again. If a drone transitions
into the PERSISTENT state, it will ask for support. The DURESS state mirrors that of the
PERSISTENT state. The DURESS state occurs when a drone is actively trying to reach HB, but
is being chased or has been intercepted. In these cases, the drone makes its first priority escaping
the adversary and its second objective reaching HB. However, a drone that is in the INACTIVE
state cannot transition to the DURESS state as it is assumed that the drone doesn’t even have
enough time or fuel for evasive maneuvers so the drone must risk being shot down or it will most
surely crash.

We refer to the three states: INVESTIGATE, PERSISTENT, and DURESS as the three special
states because they are the only three states where the drone can cease using its Predictive-RA*.
When being chased or intercepted, it is not often the best approach to calculate a trajectory of
escape as any trajectory that is generated will likely be replanned after the next step. In these cases,
rather than using Predictive-RA*, the drone employs a Vector Field to dictate motion. The vector
field is a representation of the environment and its assets as push- and pull-forces. Each adversary
represents a push-force. The push-force is translated according to the current velocity of the
adversary and its relative distance from the drone. The objective of the drone represents a pull-
force. The pull-force is also translated by the distance the objective is away from the drone. One
other advantage of representing the environment in this fashion is that it allows the drone to treat
its objective as a sink. In such cases when the drone is actively avoiding adversaries, but is also
collecting intel, it will attempt to stay within collection range while avoiding the adversary. Hence,
the drone will typically only cease collection if the intel target would come within weapon range.
The only difference being that in the DURESS state, HB is treated as the target.

The final state is the JAMMED state. The JAMMED state occurs when a TUAgent has a
message that it needs to share with other TUAgents or with the HomebaseAgent, but is currently
within jamming range. In this state, it is the top priority to leave jamming range. However, a
TUAgent won’t always know where the jammer is so it won’t know the best direction to take to
leave jamming range quickly. As such, a TUAgent in the JAMMED state will head back towards
HB. In this way, it can share its messages with the HomebaseAgent to guarantee that the messages

Approved for Public Release; Distribution Unlimited.

41

were received by at least one other agent. The HB also carries ECCM so a TUAgent will be
guaranteed to send if it can get close enough to HB. A TUAgent can transition out of the JAMMED
state once it has shared its messages with the HomebaseAgent. Because of this, the
HomebaseAgent can also be a useful agent to share the most current information. This will be
discussed further in the second layer.

3.2.3.2 Layer2: Message Passing

 To allow drones to collaborate in a decentralized fashion, a number of message passing protocols
were defined. In total, there are four message passing protocols that have been created. The first is
for message passing between EventAgents, which utilizes the DiscoveryEventMessage and the
IntelEventMessage. The second is for message passing between ExploreAgents and with the
HomebaseAgent, which utilizes the QuadControlMessage. The third is for message passing
between TaskAgents and with the HomebaseAgent, which utilizes the TaskControlMessage.
Finally, the fourth is for message passing between TUAgents and with the HomebaseAgent, which
utilizes the AgentControlMessage.

1) EventAgent Communication Protocol:

The principal responsibility of every EventAgent is to register events and communicate those
events to the other EventAgents so that they register those events as well. The events that must be
registered include the New Intel event, the New Jammer event, the New AA event, and the Lost
Drone event. When a new intel is discovered, a new jammer is discovered, a new AA is discovered,
or a lost drone is discovered, then the EventAgent sends a DiscoveryEventMessage to the other
EventAgents to report it. It is often the case that when a new intel is discovered, the sensor type

EventAgent Communication Protocol
DiscoveryEventMessage, IntelEventMessage

ExploreAgents Communication Protocol
QuadControlMessage

TaskAgents Communication Protocol
TaskControlMessage

TUAgents Communication Protocol
AgentControlMessage

Approved for Public Release; Distribution Unlimited.

42

requirement for that intel is not known. If it becomes known, then an IntelEventMessage is
broadcasted to report the sensor type. In addition to reporting the known intel type, the
IntelEventMessage can also be used to broadcast an inverted sensor type. This inverted sensor type
indicates that this intel is no longer available to any drone that has the same sensor type as the
inverted sensor type. Any drone with a different sensor type may still attempt to claim the intel. It
can also occur that a drone is not able to come close enough to the intel to determine the sensor
type or if it needs to report an inverted sensor type. As such, the first sensor type that is reported
for an intel – if the sensor type is not already known – is the unknown sensor type. An intel with
an unknown sensor type is available to all drones. The final purpose of the IntelEventMessage is
to report the intel string of collected intel. Any drone that has an intel string to report that is also
within jamming range will attempt to escape jamming range in order to report the collected intel
string.

Since drones can also be jammed, it is also important to consider what would happen if the
message is not received. Assuming that an EventAgent is jammed, it would not be able to receive
or broadcast DiscoveryEventMessages or IntelEventMessages. These messages do not impact the
decision making of the drone nor its tasks. As such, these messages are secondary to whatever else
the drone is currently doing with the only two exceptions being for new intel and intel strings. If a
new intel is spotted, then that intel objective must be reported so that it can be collected. If a drone
has an intel string that it has collected, it must find a way to report that intel string.

2) ExploreAgents Communication Protocol:

To collaborate on exploration tasks, ExploreAgents must be able to communicate about
exploration tasks. The QuadControlMessage is used to communicate which exploration tasks have
been claimed, aborted, or completed. If an exploration task is claimed by multiple ExploreAgents,
then the ExploreAgents with the lowest ranks abort the exploration task. This can be tacitly done
as the other drones which received both claim messages know to use the claim message from the
ExploreAgent with the greater rank. Ranks are shared while the drones are still at HB and do not
change. If a drone has claimed an exploration task, but cannot complete the task or has chosen a
collection task or support task over the exploration task, then it must abort its current exploration
task. It will send a QuadControlMessage with the ABORT signal to inform the other
ExploreAgents that they can now claim the aborted exploration task. Lastly, if an ExploreAgent is
successful in exploring its objective quad, then it will broadcast a COMPLETE signal using the
QuadControlMessage. This informs the other ExploreAgents that the claimed task has now been
completed.

In the event that an ExploreAgent is jammed, then it will not be able to send or receive
QuadControlMessages. If an ExploreAgent does not receive a CLAIM signal, then it might attempt
to explore the same task as another ExploreAgent. This leads to redundancy that results in wasted
time and fuel, but ultimately not a huge expense. Redundantly exploring the same area can also
provide drones who couldn’t communicate the same knowledge about the same environment. This
can even potentially aid in the collection of intel. Overall, it can often cost more resources to leave
jamming range to send a CLAIM signal than it would cost for another drone to explore that quad
redundantly since ExploreAgents explore the quads nearest them and jamming ranges can be rather

Approved for Public Release; Distribution Unlimited.

43

large. The other two messages are the ABORT signal and the COMPLETE signal. The ABORT
signal can have an impact on the results of the exploration because if other drones do not receive
the ABORT signal, then they will never explore that piece of the environment as they will never
know that the task has become available for claim. However, ExploreAgents only ABORT in the
event that they have claimed a collection or a support task. As such, it is of greater priority for
them to proceed with that task than it is for them to discover a means of communicating the
ABORT. As it turns out, they can typically communicate the ABORT at a later time after they
have completed their other tasks. The COMPLETE is of no impact if it is not received as any task
that is completed was previously claimed. A claimed task cannot be claimed by another
ExploreAgent so a completed task will not be redundantly visited.

3) TaskAgents Communication Protocol:

TaskAgents use TaskControlMessages to communicate about the state of current tasks. There
are eight signals that can be sent using a TaskControlMessage: OPEN, CLAIM, CLOSE,
COMPLETE, ABORT, CANCEL, UPDATE, and SUPPORT. A message is sent with the OPEN
signal when a new intel objective has been detected and converted to a task. In some sense, this is
redundant because any drone that received the intel DiscoveryEventMessage would also know to
convert the new intel objective to a task. However, we leave the management of tasks to the
TaskAgent so the TaskAgent signals when a Task should be opened. A task can be opened only
when the task is currently available to the TaskAgent. This means that the sensor type requirement
of the task is either unknown, not the inverted sensor type of the TaskAgent, or is the same sensor
type as the TaskAgent.

Once a task has been opened, it can be claimed. If a TaskAgent claims a task, then they send
out the CLAIM signal to inform the other TaskAgents and the HomebaseAgent that the task has
been claimed. If more than one drone sends out a CLAIM signal for the same intel objective, then
the drone with the greatest rank will keep the task and the others will abort. This can be done
silently as the other receiving drones know which drone will keep the claim. If a task has been
claimed, then no other TaskAgent will attempt to collect that intel objective unless they are
supporting. If a task has been claimed, then the TaskAgent who claimed the task can also signal a
COMPLETE, an ABORT, or a CANCEL. If the drone has successfully collected the intel string
from its objective, then it will signal a COMPLETE that informs the other drones that it has
completed its task. Otherwise, if the TaskAgent could not complete the task and had to give up the
task, then it will signal an ABORT, which shows that the task should be claimed by another
TaskAgent. In certain edge cases, there is no way to collect an intel objective. In such cases, the
drone who claimed the intel task can signal a CANCEL, which informs the other TaskAgents that
this task cannot be completed.

The last two signals are used to communicate information about a task. The UPDATE signal is
sent whenever the sensor type requirement of an intel becomes known or if adversaries are spotted
near an intel objective during investigation. The SUPPORT signal is used to both ask for support
and notify that support is on its way. In the event that a TaskAgent believes that it needs aid for its
current assignment, it will signal a SUPPORT with how much SUPPORT it needs. TaskAgents
that receive the SUPPORT signal and can support then respond with a SUPPORT signal to notify

Approved for Public Release; Distribution Unlimited.

44

the original recipient that they are supporting. Same as with claiming tasks, if too many
TaskAgents signal a support, then those with the lowest rank will abandon.

In case of limited or jammed communications, TaskAgent is embedded with a simple strategy
to determine what will happen in the event that signals are not sent or cannot be received. In the
case that a TaskAgent has discovered intel, but cannot send an OPEN signal, then that intel will
remain unknown to the remaining TaskAgents. If this intel can be collected by the TaskAgent who
discovered it, then they can proceed with attempting to collect the intel without moving out of
jamming range to send the OPEN signal. If they do so, it is possible that they would be shot down
or crash without collecting the intel or signaling other TaskAgents about the intel, but if they could
not signal the OPEN, then they also couldn’t signal that the quad had been explored. As such, other
TaskAgents will explore this area and will rediscover the intel objective. However, if they cannot
collect the intel objective, then they should make every effort to broadcast the OPEN signal so that
other TaskAgents might be able to make the attempt to collect the intel objective.

In addition to being prohibited from sending an OPEN signal when they get jammed,
TaskAgents can also be prohibited from sending the CLAIM, COMPLETE, ABORT, and
CANCEL signals. If a drone is unable to send the CLAIM signal, then it is possible that another
drone or drones might attempt to collect the same intel objective. This would be redundant, but it
would also increase the chances of collecting the intel objective. As such, it is not considered a
priority to leave jamming range to send this signal. COMPLETE and CANCEL are two other
signals that are not prioritized. If a COMPLETE signal is not sent, then no other drones will attempt
to collect the intel objective as it has already been claimed and is therefore not available. However,
it is of top priority that collected intel strings be broadcasted to other TaskAgents and to HB so
drones will leave jamming range to communicate the intel string which is equivalent to leaving
jamming range to communicate a COMPLETE signal. Similarly, a task that has been canceled
won’t be attempted because a task must first be claimed before it can be canceled. Another
important signal to communicate about is the ABORT signal. If an ABORT signal is not sent, then
other TaskAgents will not try to claim it. As such, any drone who is jammed must exit jamming
range to broadcast an ABORT signal so that another drone may claim the task.

The last two signals are the UPDATE and SUPPORT signals. The UPDATE signal is used to
UPDATE the sensor type requirement of an intel objective and is also used to update the number
of adversaries near an objective. In the event that an UPDATE signal is not received, and an
ABORT signal is sent that is received, then it is possible that a drone who does not have the correct
sensor type requirement for the intel objective would attempt the objective. However, if a
TaskAgent can receive the ABORT signal, then they can also be updated with the correct sensor
type as well. Therefore, it is not a priority to leave jamming range to send an UPDATE signal for
this reason. It is also not a priority to leave jamming range to send an UPDATE signal to update
the number of adversaries near an intel objective. Adversaries are mobile and the number of
adversaries near an intel objective is constantly changing. As such, it is likely that by the time a
TaskAgent left jamming range to send the UPDATE signal, the number of adversaries around the
objective would have already changed. While it may not be a priority to send an UPDATE signal,
it is a priority to send a SUPPORT signal. If a TaskAgent sends a SUPPORT signal, it is because
they need other TaskAgents to aid them in order to collect the intel. If this signal is not sent, then

Approved for Public Release; Distribution Unlimited.

45

no other TaskAgents will aid. As such, the TaskAgent must leave jamming range to broadcast the
SUPPORT signal so that other TaskAgents will support. The TaskAgent can also wait for
SUPPORT responses to confirm that other drones are supporting.

4) TUAgents Communication Protocol:

TUAgents communicate by passing AgentControlMessages. The purpose of this
communication layer is to synchronize data between the sharing agents. and with the
HomebaseAgent. When two agents can share an AgentControlMessage, they can then directly
message one another the state of their explore tasks, collection tasks, and support tasks. These
states are recorded as a series of updates that were made to their tasks, which includes opening
tasks, claiming tasks, completing tasks, aborting tasks, etc. There can be conflicts when two or
more task agents both claimed the same task, but the two TUAgents can use the ranking order to
resolve the conflict. The importance of this protocol is that it allows a TUAgent, which is aware
of available tasks or unavailable tasks, to share those tasks with another TUAgent. Thus, the
recipient will have the opportunity to attempt tasks that they were unaware are available and will
not attempt tasks that are unavailable. This message is not sent as a response to an event, but rather
is something that occurs whenever a TUAgent can share messages with another TUAgent or with
the HomebaseAgent. As such, a drone that is jammed doesn’t need to exit jamming range in order
to send an AgentControlMessage. Eventually, the drone will run out of tasks and will head to
homebase and then have the opportunity to share an AgentControlMessage.

3.2.3.3 Layer3: Runner & CLI

 The Runner is responsible for generating the pre-execution information such as the rankings of
the agents, updating them, and communicating with the Docker instance. Each run of a scenario
can be configured by providing input parameters that are handled by the CLI. By default, the Runner
is set to ignore all intel targets and adversaries that are available in the config file. By doing so, no
agent will have any information on their environment requiring that the agents work together to
explore their environment to discover the intel objectives. This default mode can be overwritten by
providing the --intel_known command. If this command is provided, then all intel objectives will
be made known to the agents prior to mission start. The agents won’t assume that this set of
objectives is complete so they will still explore their environment after all known objectives have
been discovered. They will be provided the locations of the objectives as written in the config. As
such, to provide only approximate locations, a recon file can be provided to the Runner instead of
a config file. This will not interfere with the Runner in any way. If it is desired that only some, but
not all, of the intel objectives are made known to the agents, then in addition to the --intel_known
command, the --pop_ups command can also be used to pass the GUIDs of the intel objectives that
should not be made available to the agents. The input to the --pop_ups command is a comma-
separate, but not space separated, list of GUIDs.

Approved for Public Release; Distribution Unlimited.

46

 The --red_vision, --red_weapon, --red_speed, and --blue_speed commands can be used to
reconfigure agent behavior and expectations on the fly. These should be set to reflect the agent’s
expectations of their adversaries. They do not have to be set to the actual values of the adversaries’
vision range, weapon range, and speed. The Runner will not parse the config file to inspect these
values. The last commands of interest are the --alpha and --points commands. These commands are
used to configure the input parameters to the path planner. Our path planner is based on RA* so the
alpha parameter is used as a heuristic to weight paths while the points parameter is meant to reflect
how many points are required to collect an intel. This is used by agents to determine how long they
should attempt to collect an intel objective. The points command does not have to be exact.
However, if the points command is less than the actual points of an intel objective, then it is possible
that a drone will abandon if it has other tasks that it can claim with more points.

 4.0 Results and Discussion
 To evaluate the resiliency of our solution, we ran it against a total of three diverse scenarios
given by the AFRL/RI MIMFA team. Each scenario (S1 through S3) has a permissive version and
an A2AD (non-permissive, contested) version. In the permissive version of a scenario, it is
relatively easy to reach maximum possible levels of performance. The A2AD version of the
scenario (essentially a shift or extension from the corresponding permissive version) introduces
added difficulty in terms of uncertainty (number and locations of intel or anti-air), a contested
communications model due to jamming, and increased potential for asset loss. S1P refers to
Scenario 1 Permissive. S1A refers to Scenario 1 A2AD and so on.

4.1 A2AD Event List
 This is the list of potential A2AD events that could occur in any of the A2AD versions of the
scenarios:

• Limited comm range. This is implemented with a gradient level of jamming/comm power
from the center of the jammer/transmitter

• Inability to refuel. The drone starts with a limited quantity of fuel and is unable to refuel
during the mission time.

• Increased jamming range (and/or effectiveness). Effective jamming range may cover 50%
to 80% of the map and Jammers would remain stationary.

• Increased/decreased speed of Mobile AAs on an asset-by-asset basis.

• Inexact intel target positioning. Ability to prevent the drones from knowing adversarial
asset exact or general locations beforehand. This includes Mobile AAs, Jammers, and intel
assets.

• Reduced or increased visual range of adversarial assets on an asset-by-asset basis.

4.2 Objective Function
The following are the metrics of interest and their relative weight/importance

Approved for Public Release; Distribution Unlimited.

47

Table 2: The performance metrics

Variable Relative Weight (%) Description
IAPI 30 % identified positions of Red Intel Assets
ISVC 25 % Intel total value captured
SM 15 % of total minutes spare after mission completion
BFS 15 % of Blue Force Assets Survived
AAPI 10 % identified positions of Red Anti-Air
JAPI 5 % identified positions of Red Jammers

4.3 Scenarios
4.3.1 Scenario 1

Time Limit: 30 minutes of simulation time.
Permissive: The environment size is 6x6 km with the home base at the center. There are 15
Blue Force, all have the same sensor type. The Red Force are 5 Mobile AAs, 5 Jammers, and
20 intel sites randomly placed in the environment. All Red Force asset types, intel types, and
locations are known beforehand. All 20 intel sites have a single intel item with a value of 1.0.
A2AD Event: Mobile AAs are increased to 25 assets. The Blue Force communication power
reduced to half. None of the intel site information is known beforehand.
Results: By computing details about intel collection, information dissemination, and map
coverage using the FarCo calculator; we were able to precisely find the performance scores for
both permissive and A2AD versions. As shown in Table 4, the performance score for S1P is
84.12% while S1A’s performance score is 81.07%. Hence, the resiliency of our solution in
Scenario 1 is 96.4%.

Table 3: Performance metrics for Scenario 1

Variable S1P S1A
IAPI 100 100
ISVC 100 100
SM 0.805 0.472
BFS 93.33 73.33
AAPI 100 100
JAPI 100 100
Score 84.12% 81.07%

4.3.2 Scenario 2

Time Limit: 45 minutes of simulation time.
Permissive: The environment size is 10x10 km. Blue Force home base is situated at extreme
upper-left. There are 30 Blue Force assets with sensor type A, 10 Blue Force assets with sensor
type B. The Red Force are 20 Mobile AAs, 10 Jammers, 40 intel sites, spread randomly in NE,
SE, and SW quadrants. All Red Force asset types, intel types, and locations are known

Approved for Public Release; Distribution Unlimited.

48

beforehand. Half of the intel sites are of type A and the other half are of type B. Each intel site
contains three intel items. Type A intel items are valued at 1.0 and Type B intel items are valued
at 2.0.
A2AD Event: None of the intel site information is known beforehand. Red Force increased to
60 Mobile AA assets. Half of the Red Force AA sites are able to move 3% faster than the default
Blue Force speed.
Results: The performance score for S2P is 71.4% while S2A’s performance score is 59.1%.
Hence, the resiliency of our solution in Scenario 2 is 83% (Table 4).

=
Table 4: Performance metrics for Scenario 2

Variable S2P S2A
IAPI 97.5 85
ISVC 67.77 49.44
SM 0.537 2.759
BFS 77.5 60
AAPI 90 83.33
JAPI 90 70
Score 71.4% 59.1%

4.3.3 Scenario 3

Time Limit: 75 minutes of simulation time.
Permissive: The environment size is 16x16 km. Blue Force home base is situated at extreme
upper-right. There are 30 Blue Force assets with sensor type A, 30 Blue Force assets with sensor
type D, and 10 Blue Force assets with sensor type E. The Red Force are 40 Mobile AAs, 10
Jammers, 100 intel sites, spread randomly in NW, SE, and SW quadrants. All Red Force asset
types, intel types, and locations are known beforehand. 33 intel sites are of type A, 33 are of
type D, and 34 are of type C. Each intel site has four intel items, each of which are valued at
1.0.
A2AD Event: None of the Red Force information is known beforehand and Blue Force assets
are unable to refuel. Half of the Blue Force is reduced to 50% of fuel capacity and Red Force
increased to 100 Mobile AA assets. Jamming power is increased 20%.
Results: AS displayed in Table 5, the performance score for S3P is 49.94% while S3A’s
performance score is 24.735%. Hence, the resiliency of our solution in Scenario 3 is 49.4%.

Table 5: Performance metrics for Scenario 3

Variable S3P S3A
IAPI 72 8
ISVC 59.5 4.5
SM 0.655 82.233

Approved for Public Release; Distribution Unlimited.

49

BFS 32.5 52.5
AAPI 60 10
JAPI 50 0
Score 49.94% 24.735%

 5.0 Conclusion
We have done a tremendous amount of work over the duration of this project. Beginning with

an intuition about the relationship between the dynamic environment and the robustness of the
mission plans, we developed a path planning algorithm called Robustness A* (RA*) to
dynamically and flexibly determine the risk avoidance based on the latest information about the
environment and mission constraints. It addresses the “reach-while-avoid-when-possible” path
planning problem by using the MTL robustness theory. Building on RA*, we developed a learning
framework using IRL, MDP, and KF to predict the behaviors carried by enemy agents as a reaction
to our drone’s action. The P-MTL is used to conduct temporal logic reasoning over probabilistic
and predicted states of KF.

We did not stop there, however. We developed an intuitive approach for the task collaboration
and coordination between the ally drones using a priori reconnaissance about the task and risk
distributions. We used the Quad-Tree and K-Partite graph to assign tasks in centralized and
decentralized fashion. The Quad-Tree is utilized to model the uncertainty in Intel and enemies
locations during the mission time. Then, the tree is used by the K-Partite graph to compute the
utility functions for drones and find their assignments maximizing the mission goal of collecting
as many Intel as possible. The initial task assignments are centrally generated before the mission
gets started then each drone can maintain its local copies of the Quad-Tree and graph to assign
itself to other tasks. The drones communicate their information for coordination purposes.
Combined, we showed a super additive effect when the coordination components and policy
components work together.

 6.0 Future Work
Although we have had substantial achievements during this project, there is still a great deal of

work to be completed to understand the long-term implications of this research. First and foremost,
we would like to extend our current mission planning solution into cooperative, distributed
planning which is a complex problem where each system develops an individual, local plan that is
refined while coordinating with other systems to avoid potential conflicts and use cooperative
opportunities for improved completion of mission objectives. We think that it will make our results
much more useful. We would also like to study developing formal representation and reasoning
techniques to weigh the impact that changes to the environment have on the value of information
during the formation and execution of a plan.

We would also like to further explore using the Generative Adversarial Networks (GANs) to
directly generate the distributions of states and actions of the observed enemy without the need to
learn the reward functions in an offline training stage. This technique may help in identifying
complex behaviors of enemies to increase the robustness of the drone’s plans.

Approved for Public Release; Distribution Unlimited.

50

References
[1] A. Marshall, S. Alqahtani, A. Ridgway, C. Walter, R. Gamble, and R. Mailler, "Combining

coordination with usage policies to improve mission scheduling resilience," in 2015 Resilience
Week (RWS), 2015, pp. 1-6.

[2] M. Yokoo, T. Ishida, and K. Kuwabara, Distributed constraint satisfaction for DAI problems.
1990.

[3] M. Yokoo and E. Durfee, Distributed Constraint Optimization as a Formal Model of Partially
Adversarial Cooperation. 1996.

[4] S. E. Conry, K. Kuwabara, V. R. Lesser, and R. A. Meyer, "Multistage negotiation for distributed
constraint satisfaction," IEEE Transactions on Systems, Man, and Cybernetics, vol. 21, no. 6, pp.
1462-1477, 1991.

[5] K. Sycara, S. F. Roth, N. Sadeh, and M. S. Fox, "Distributed constrained heuristic search," IEEE
Transactions on Systems, Man, and Cybernetics, vol. 21, no. 6, pp. 1446-1461, 1991.

[6] V. R. Lesser and D. D. Corkill, "The distributed vehicle monitoring testbed: a tool for
investigating distributed problem solving networks," in Readings from the AI magazine, E.
Robert, Ed.: American Association for Artificial Intelligence, 1988, pp. 69-85.

[7] R. Mailler, "Comparing two approaches to dynamic, distributed constraint satisfaction," presented
at the Proceedings of the fourth international joint conference on Autonomous agents and
multiagent systems, The Netherlands, 2005.

[8] R. Verfaillie, and N. Jussien, "Constraint Solving in Uncertain and Dynamic Environments: A
Survey," Constraints, vol. 10, no. 3, pp. 253-281, 2005.

[9] G. E. Fainekos and G. J. Pappas, "Robustness of temporal logic specifications," presented at the
Proceedings of the First combined international conference on Formal Approaches to Software
Testing and Runtime Verification, Seattle, WA, 2006.

[10] R. Koymans, "Specifying real-time properties with metric temporal logic," Real-Time Syst., vol.
2, no. 4, pp. 255-299, 1990.

[11] A. Dokhanchi, B. Hoxha, and G. Fainekos, "On-Line Monitoring for Temporal Logic
Robustness," Cham, 2014, pp. 231-246: Springer International Publishing.

[12] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming. John
Wiley Inc., 1994, p. 672.

[13] S. Alqahtani, I. Riley, S. Taylor, R. Gamble, and R. Mailler, "MTL Robustness for Path Planning
with A*," presented at the Proceedings of the 17th International Conference on Autonomous
Agents and MultiAgent Systems, Stockholm, Sweden, 2018.

[14] A. Y. Ng and S. J. Russell, "Algorithms for Inverse Reinforcement Learning," presented at the
Proceedings of the Seventeenth International Conference on Machine Learning, 2000.

[15] B. Piot, M. Geist, and O. Pietquin, "Bridging the Gap Between Imitation Learning and Inverse
Reinforcement Learning," IEEE Transactions on Neural Networks and Learning Systems, vol. 28,
no. 8, pp. 1814-1826, 2017.

[16] R. E. Kalman, "A New Approach to Linear Filtering and Prediction Problems," Journal of Basic
Engineering, vol. 82, no. 1, pp. 35-45, 1960.

[17] S. Alqahtani, S. Taylor, I. Riley, R. Gamble, and R. Mailler, "Predictive Path Planning Algorithm
Using Kalman Filters and MTL Robustness," in 2018 IEEE International Symposium on Safety,
Security, and Rescue Robotics (SSRR), 2018, pp. 1-7.

[18] M. SANKARAN, "Approximations to the non-central chi-square distribution," Biometrika, vol.
50, no. 1-2, pp. 199-204, 1963.

[19] Y. Zhang, K. Kim, and G. Fainekos, "DisCoF: Cooperative Pathfinding in Distributed Systems
with Limited Sensing and Communication Range," Tokyo, 2016, pp. 325-340: Springer Japan.

[20] M. Peasgood, C. M. Clark, and J. McPhee, "A Complete and Scalable Strategy for Coordinating
Multiple Robots Within Roadmaps," IEEE Transactions on Robotics, vol. 24, no. 2, pp. 283-292,
2008.

Approved for Public Release; Distribution Unlimited.

51

List of Acronyms

AFRL – Air Force Research Labs

ATE2 - Autonomy Test & Evaluation Environment

CLI - Command Line Interface

CM - Coordination Module

DCOP - Distributed Constraint Optimization Problem

DCSP - Distributed Constraint Satisfaction Problem

DynDCOP - Dynamic, Distributed Constraint Optimization

Problem ECCM – Electronic Counter-Counter Measure

GAN – Generative Adversarial Network

GTC - geo-temporal constraints
HB - Home Base

IRL - Inverse Reinforcement Learning

ISR - Intelligence, Surveillance, and Reconnaissance

JR - Jamming Range

KF - Kalman Filter

MDP - Markov Decision Process

MEM - Mission Execution Module

MPM - Mission Planner Module

MTL - Metric Temporal Logic

PLF - Pattern Learning Framework

PLM - Pattern Learning Module

RA* - Robust A*

RHS - Robust Heuristic Search

UAV - Unmanned Aerial Vehicle

VR - Visual Range

WR - Weapon Range

Approved for Public Release; Distribution Unlimited.

	1.0 Summary
	2.0 Introduction
	3.0 Methods, Assumptions, and Procedures
	3.1 Characterizing an environment
	3.2 General Approach: Information Driven, Adaptive Distributed Planning
	3.2.1 Mission Planning Module: MTL Robustness for Path Planning with A*
	3.2.1.1 RA* Algorithm

	39TAlgorithm 1 Functions needed for 39TRA*39T Search
	3.2.1.2  RHS

	Algorithm 2 Functions needed for MTL-Robustness Monitoring
	3.2.1.3 Evaluation
	3.2.2 Pattern Learning Module
	3.2.2.1 Markov Decision Process (MDP)
	3.2.2.2 Inverse Reinforcement Learning (IRL)
	3.2.2.3 Kalman Filter (KF)

	Algorithm 3: assign_behavior (𝛬,,,𝒔.-𝒕−𝟏.,,,𝒔.-𝒕.)
	Algorithm 4: 𝐟𝐨𝐫𝐞𝐜𝐚𝐬𝐭,𝑖,,𝜶.,,,𝒔.-𝒕-enemy.,𝛣.
	Algorithm 5 Predictive-RA*
	Algorithm 6 Trajectory Monitoring
	3.2.2.5 Evaluation
	3.2.3 Coordination Module

	4.0 Results and Discussion
	4.1 A2AD Event List
	4.2 Objective Function
	4.3 Scenarios
	4.3.1 Scenario 1
	4.3.2 Scenario 2
	4.3.3 Scenario 3

	5.0 Conclusion
	6.0 Future Work
	References
	List of Acronyms

